精英家教网 > 高中数学 > 题目详情
1.已知抛物线L的顶点在原点,对称轴为x轴,圆M:x2+y2-2x-4y=0的圆心M和A(x1,y1)、B(x2,y2)两点均在L上,若MA与MB的斜率存在且倾斜角互补,则直线AB的斜率是(  )
A.-1B.1C.-4D.4

分析 求出抛物线的方程,利用因为MA与MB的斜率存在且倾斜角互补,所以kMA=-kMB,即可求出直线AB的斜率.

解答 解:依题意,可设抛物线的方程为y2=2px,则
因为圆点M(1,2)在抛物线上,所以22=2p×1⇒p=2,故抛物线的方程是y2=4x;
又因为MA与MB的斜率存在且倾斜角互补,所以kMA=-kMB,即$\frac{{{y_1}-2}}{{{x_1}-1}}=-\frac{{{y_2}-2}}{{{x_2}-1}}$.
又因为A(x1,y1)、B(x2,y2)均在抛物线上,所以${x_1}=\frac{y_1^2}{4}$,${x_2}=\frac{y_2^2}{4}$,
从而有$\frac{{{y_1}-2}}{{\frac{y_1^2}{4}-1}}=-\frac{{{y_2}-2}}{{\frac{y_2^2}{4}-1}}⇒\frac{4}{{{y_1}+2}}=-\frac{4}{{{y_2}+2}}⇒{y_1}+{y_2}=-4$,
直线AB的斜率${k_{AB}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{4}{{{y_1}+{y_2}}}=-1$.
故选:A.

点评 本题考查抛物线的方程与性质,考查直线斜率的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC,点E,F分别是BC,A1C的中点.
(1)求证:EF∥平面A1B1BA;
(2)求证:平面AEA1⊥平面BCB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=-x+ex-m的单调增区间是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,离心率e=$\frac{1}{2}$,点$D(0\;,\;\sqrt{3})$在椭圆E上.
(Ⅰ) 求椭圆E的方程;
(Ⅱ) 设过点F且不与坐标轴垂直的直线交椭圆E于A,B两点,△DAF的面积为S△DAF,△DBF的面积为S△DBF,且S△DAF:S△DBF=2:1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合An={(x1,x2,…,xn)|xi∈{-1,1}(i=1,2,…,n)}.x,y∈An,x=(x1,x2,…,xn),y=(y1,y2,…,yn),其中xi,yi∈{-1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+xnyn.若x⊙y=0,则称x与y正交.
(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;
(Ⅱ)令B={x⊙y|x,y∈An}.若m∈B,证明:m+n为偶数;
(Ⅲ)若A⊆An,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=lg(ax-bx),(a,b为常数,a>1>b>0),若x∈(2,+∞)时,f(x)>0恒成立,则(  )
A.a2-b2>1B.a2-b2≥1C.a2-b2<1D.a2-b2≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在面积为1的等边三角形ABC内任取一点,使三角形△ABP,△ACP,△BCP的面积都小于$\frac{1}{2}$的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两人各进行3次射击,甲、乙每次击中目标的概率分别为$\frac{1}{2}$和$\frac{2}{3}$.
(1)求甲至多击中目标2次的概率;
(2)记乙击中目标的次数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲家公司面试的概率为$\frac{1}{2}$,得到乙、丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的,记X为该毕业生得到面试的公司个数,若P(X=0)=$\frac{1}{18}$,则随机变量X的数学期望E(X)=$\frac{11}{6}$.

查看答案和解析>>

同步练习册答案