精英家教网 > 高中数学 > 题目详情
20.若二次函数f(x)=x2+mx-(m-1)的图象与x轴有两个交点,则实数m的取值范围是m>-2+2$\sqrt{2}$或m<-2-2$\sqrt{2}$.

分析 二次函数f(x)=x2+mx-(m-1)的图象与x轴有两个交点,相当于方程x2+mx-(m-1)=0有两不同实数根,
可得∴△=m2+4(m-1)>0,根据求根公式可得m的范围.

解答 解:二次函数f(x)=x2+mx-(m-1)的图象与x轴有两个交点,
∴方程x2+mx-(m-1)=0有两不同实数根,
∴△=m2+4(m-1)>0,
∴m>-2+2$\sqrt{2}$或m<-2-2$\sqrt{2}$,
故答案为m>-2+2$\sqrt{2}$或m<-2-2$\sqrt{2}$.

点评 考查了二次函数的图象和函数与方程的关系,利用求根公式解二次不等式问题.属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A(-2,1),B(3,-1)关于直线l对称,且点(2,$\frac{3}{2}$)在直线l上,则直线l的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数y=lnx与y=ax2-a的图象有公共点.且在公共点处有共同的切线.则a的值为(  )
A.$\frac{e}{2}$B.1C.$\frac{1}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知θ∈R,向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=(2,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则sin2θ(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设平面内的四边形ABCD和点O,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OD}$=$\overrightarrow{d}$.若$\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d}$.则四边形ABCD的形状是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有5个红球,4个白球,这些球除颜色外完全相同,现一次从中摸出5个球,若摸到4个红球1个白球就中一等奖,求中一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sinα+cosα=$\frac{\sqrt{5}}{5}$(α是第二象限角),则tanα的值是(  )
A.-2B.-$\frac{1}{2}$C.$\frac{4}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow{b}$=( $\sqrt{3}$,1),则<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD中,四边形ABCD是边长为2的菱形,AC交BD于F,E为PA的中点,PC=3,且PC⊥平面ABCD.
(1)求证:平面EBD⊥平面ABCD;
(2)若三棱锥P-BCF的体积为2$\sqrt{3}$,求点E到平面PBC的距离.

查看答案和解析>>

同步练习册答案