13£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨¢ñ£© ÈôµãMµÄÖ±½Ç×ø±êΪ£¨2£¬$\sqrt{3}$£©£¬Ö±ÏßlÓëÇúÏßC1½»ÓÚA¡¢BÁ½µã£¬Çó|MA|+|MB|µÄÖµ£®
£¨¢ò£©ÉèÇúÏßC1¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}x'=\frac{{\sqrt{3}}}{2}x\\ y'=\frac{1}{2}y\end{array}\right.$µÃµ½ÇúÏßC2£¬ÇóÇúÏßC2µÄÄÚ½Ó¾ØÐÎÖܳ¤µÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÇóµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬°ÑÖ±Ïßl´úÈëÔ²µÄÖ±½Ç×ø±ê·½³Ì£¬»¯¼òºóÀûÓÃΤ´ï¶¨Àí¿ÉÇót1+t2£¬t1t2µÄÖµ£¬ÓÉ|MA|+|MB|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$£¬¼´¿ÉÇóµÃ|MA|+|MB|µÄÖµ£»
£¨¢ò£©Éè¾ØÐεĶ¥µã×ø±êΪ£¨x¡ä£¬y¡ä£©£¬Ôò¸ù¾Ýx¡ä£¬y¡äµÄ¹ØϵÏûÔªµÃ³öP¹ØÓÚx£¨»òy£©µÄº¯Êý£¬ÀûÓõ¼Êý£¬Çó³ö´Ëº¯ÊýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬ÔòÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2=4£¬
Ö±Ïßl£º$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}$£¬×ª»¯³ÉÆÕͨ·½³ÌΪ£ºy-$\sqrt{3}$x+$\sqrt{3}$=0£¬
ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
½«Ö±ÏßlµÄ²ÎÊý·½³Ì´øÈëÔ²µÄÖ±½Ç×ø±ê·½³Ìx2+y2=4£¬
ÕûÀíµÃ£ºt2+5t+3=0£¬
¡÷£¾0£¬¹Êt1£¬t2ÊÇ·½³ÌµÄÁ½¸ö¸ù£¬
¡àt1+t2=-5£¬t1•t2=3£¬
|MA|+|MB|=|t1|+|t2|=|t1+t2|=5£»
£¨¢ò£©$\left\{\begin{array}{l}{x=\frac{2\sqrt{3}}{3}x¡ä}\\{y=2y¡ä}\end{array}\right.$´úÈëÇúÏßCµÄ·½³ÌµÃ£º$\frac{x{¡ä}^{2}}{3}+y{¡ä}^{2}=1$£¬
ÉèÇúÏßC¡äµÄÄÚ½Ó¾ØÐÎÖܳ¤ÎªP£¬
ÇúÏßC¡äµÄÄÚ½Ó¾ØÐεĵÚÒ»ÏóÏÞÄڵĶ¥µãΪN£¨x¡ä£¬y¡ä£©£¨0£¼x£¼$\sqrt{3}$£¬0£¼y£¼1£©£¬
x¡ä2+3y¡ä2=3£¬x¡ä=$\sqrt{3-3y{¡ä}^{2}}$£¬
P=4x¡ä+4y¡ä=4$\sqrt{3-3y{¡ä}^{2}}$+4y¡ä£¬
Áîf£¨y£©=4$\sqrt{3-3y{¡ä}^{2}}$+4y¡ä£¬
f¡ä£¨y£©=$\frac{-12y¡ä}{\sqrt{3-3y{¡ä}^{2}}}$+4£¬
Áîf¡ä£¨y¡ä£©=0µÃy=$\frac{1}{2}$£¬
µ±0£¼y¡ä£¼$\frac{1}{2}$ʱ£¬f¡ä£¨y¡ä£©£¾0£¬µ±$\frac{1}{2}$£¼y£¼1ʱ£¬f¡ä£¨y¡ä£©£¼0£®
¡àµ±y¡ä=$\frac{1}{2}$ʱ£¬f£¨y£©È¡µÃ×î´ó8£®
ÇúÏßC¡äµÄÄÚ½Ó¾ØÐÎÖܳ¤µÄ×î´ó8£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±Ïß²ÎÊý·½³Ì¡¢ÏÒ³¤¹«Ê½£¬ÀûÓõ¼ÊýÇóº¯ÊýµÄ×îÖµ£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬ÊôÓÚÖеµÌ⣮£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¹Û²ìÏÂÁÐËãʽ£º
13=1
23=3+5
33=7+9+11
43=13+15+17+19
¡­
ÈôijÊým3°´ÉÏÊö¹æÂÉÕ¹¿ªºó£¬·¢ÏÖµÈʽÓұߺ¬ÓС±2661¡°Õâ¸öÊý£¬Ôòm=52£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬g£¨x£©=$\frac{1}{2}$ax2+bx£¨a¡Ù0£©£®
µ±a=-2ʱ£¬º¯Êýh£¨x£©=f£¨x£©-g£¨x£©ÔÚÆ䶨ÒåÓòÉÏÊÇÔöº¯Êý£¬Èôº¯Êý¦Õ£¨x£©=e2x+bex£¬x¡Ê[0£¬ln 2]£¬Çóº¯Êý¦Õ£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{3x-b£¬x£¼1}\\{{2}^{x}£¬x¡Ý1}\end{array}\right.$
£¨1£©Èô·½³Ìf£¨x£©=4ÓÐÁ½¸öʵ¸ù£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£»
£¨2£©Èôf£¨f£¨$\frac{5}{6}$£©£©=4£¬ÇóʵÊýbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¹Û²ìÏÂÁÐʽ×Ó£º
$\begin{array}{l}1+\frac{1}{2^2}£¼1+\frac{1}{2}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}£¼1+\frac{2}{3}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}£¼1+\frac{3}{4}\end{array}$
¸ù¾ÝÒÔÉÏʽ×Ó¿ÉÒÔ²ÂÏ룺1+$\frac{1}{2^2}+\frac{1}{3^2}+¡­+\frac{1}{n^2}$£¼1+$\frac{n-1}{n}$£¨n¡Ý2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®É躯Êýf£¨x£©=$\left\{{\begin{array}{l}{{2^{1-x}}£¬\;x¡Ü1}\\{1+{{log}_2}x£¬\;x£¾1}\end{array}}$£¬ÔòÂú×ãf£¨x£©¡Ü3µÄxµÄÈ¡Öµ·¶Î§Îª[1-log23£¬4]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É踴Êýz=-3cos¦È+isin¦È£®£¨iΪÐéÊýµ¥Î»£©
£¨1£©µ±¦È=$\frac{4}{3}$¦Ðʱ£¬Çó|z|µÄÖµ£»
£¨2£©µ±¦È¡Ê[$\frac{¦Ð}{2}$£¬¦Ð]ʱ£¬¸´Êýz1=cos¦È-isin¦È£¬ÇÒz1zΪ´¿ÐéÊý£¬Çó¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚ¡÷ABCÖУ¬¡ÏBAC=120¡ã£¬ADΪ½ÇAµÄƽ·ÖÏߣ¬AC=3£¬AB=6£¬ÔòADµÄ³¤ÊÇ£¨¡¡¡¡£©
A£®2B£®2»ò4C£®1»ò2D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÅ×ÎïÏßx2=4yµÄ½¹µãΪF£¬PΪ¸ÃÅ×ÎïÏßÔÚµÚÒ»ÏóÏÞÄÚµÄͼÏóÉϵÄÒ»¸ö¶¯µã
£¨¢ñ£©µ±|PF|=2ʱ£¬ÇóµãPµÄ×ø±ê£»
£¨¢ò£©ÇóµãPµ½Ö±Ïßy=x-10µÄ¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸