精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=mx2-2x+m其中实数m为常数.
(1)求m的值,使函数f(x)的图象在x=0处的切线l与圆C:x2+y2-4x-2y=0也相切.
(2)当m>0时,求关于x的不等式f(x)≤0的解集M.
分析:(1)先对函数求导,根据导数的几何意义可求函数在x=0处的切线的斜率f'(0)=-2,求出切线方程,由切线l与圆C:(x-2)2+(y-1)2=5相切,可得圆心到直线L的距离等于半径可求m
(2)当m>0时,关于x的不等式f(x)≤0,即mx2-2x+m≤0,△=4-4m2,要求解不等式,根据二次不等式的求解,需要讨论①当△>0②当△=0,③当△<0,三种情况求解集合M
解答:解:(1)f(x)=mx2-2x+m,f(0)=m,f'(x)=2mx-2,f'(0)=-2.
则切线l的方程为y-m=-2x,即2x+y-m=0.
因为切线l与圆C:(x-2)2+(y-1)2=5相切,所以
|5-m|
5
=
5
,即|m-5|=5
又m≠0.故m=10
(2)当m>0时,关于x的不等式f(x)≤0,即mx2-2x+m≤0,△=4-4m2
①当△>0,即0<m<1时,关于x的方程f(x)=0有两个不相等的实数解x=
1-m2
m

M=[
1-
1-m2
m
1+
1-m2
m
]

②当△=0,即m=1时,关于x的方程f(x)=0有两个相等的实数解x=1则M={1};
③当△<0,即m>1时,关于x的方程f(x)=0没有实数解,则M=∅.
点评:本题主要考查了导数的几何意义:函数在一点处的导数值即为改点处的切线的斜率,直线与圆心相切关系的应用及二次不等式的求解中所体现的分类讨论思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案