精英家教网 > 高中数学 > 题目详情
设全集U=R,函数y=log
1
2
(x+3)+
1
2-x
的定义域为集合A,函数y=2|x|的值域为集合B.求:
(I)A∪B;
(Ⅱ)(CUA)∩B.
分析:(I)利用对数函数的定义域求出A={x|-3<x<2},利用指数函数的值域求出B={y|y≥1},由此能求出A∪B.
(Ⅱ)由∪=R,先求出CUA,由此能求出(CUA)∩B.
解答:解:(I)使函数y=log 
1
2
(x+3)+
1
2-x
意义,
只需
x+3>0
2-x>0

解得-3<x<2,
∴A={x|-3<x<2},
由|x|≥0,得2|x|≥1,∴B={y|y≥1},
∴A∪B={x|x>-3}.
(Ⅱ)∵全集∪=R,A={x|-3<x<2},
∴CUA={x|x≤-3,或x≥2},
∴(CUA)∩B={x|x≥2}.
点评:本题考查集合的交、并、补集的混合运算,解题时要认真审题,仔细解答,注意对数函数的定义域和指数函数的值域的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U=R,函数y=log2(6-x-x2)的定义域为A,函数y=
1
x2-x-12
的定义域为B 
(1)求集合A与B;
(2)求A∩B、(CUA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设全集U=R,函数y=log2(6-x-x2)的定义域为A,函数数学公式的定义域为B (1)求集合A与B;(2)求A∩B、(CUA)∪B

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设全集U=R,函数y=log
1
2
(x+3)+
1
2-x
的定义域为集合A,函数y=2|x|的值域为集合B.求:
(I)A∪B;
(Ⅱ)(CUA)∩B.

查看答案和解析>>

科目:高中数学 来源:专项题 题型:解答题

设全集U=R,函数y=log2(6-x-x2)的定义域为A,函数y=的定义域为B。
(1)求集合A与B;
(2)求A∩B,(CUA)∪B

查看答案和解析>>

同步练习册答案