精英家教网 > 高中数学 > 题目详情
为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:
喜爱打篮球不喜爱打篮球合计
男生24832
女生121628
合计362460
(Ⅰ)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由.
(Ⅱ)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X,求X的分布列与期望.
下面的临界值表供参考:
P(X2≥x0)或P(K2≥k00.100.050.0100.005
x0(或k02.7063.8416.6357.879
(参考公式:K2=
n(n11n13-n13n21)2
n1+n2+n+1n+1
,其中n=n11+n12+n21+n12或K2=
n(nd-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d))
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(Ⅰ)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系.
(Ⅱ)喜爱打篮球的女生人数X的可能取值为0,1,2,通过列举得到事件数,分别计算出它们的概率,最后利用列出分布列,求出期望即可.
解答: 解:(Ⅰ)∵K2=
60×(24×16-12×8)2
36×24×32×28
≈6.429>3.841,
∴有95%的把握认为喜爱打篮球与性别有关;
(Ⅱ)喜爱打篮球的女生人数X的可能取值为0,1,2,
其概率分别为P(X=0)=
C
0
12
C
2
16
C
2
28
=
20
63
,P(X=1)=
C
1
12
C
1
16
C
2
28
=
32
63
,P(X=2)=
C
2
12
C
0
16
C
2
28
=
11
63

故ξ的分布列为:
X012
P
20
63
32
63
11
63
ξ的期望值为:EX=0×
20
63
+1×
32
63
+2×
11
63
=
6
7
点评:本题是一个统计综合题,包含独立性检验、离散型随机变量的期望与方差和概率,本题通过创设情境激发学生学习数学的情感,帮助培养其严谨治学的态度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在复平面内,复数z1和z2对应的点分别是A和B,则z1z2等于(  )
A、-2+iB、-1+2i
C、2-iD、1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:

2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:f1(x)=x2+1,f2(x)=x3,f3(x)=
ln|x|
x
,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四面体的三视图如图所示,则该四面体的四个面中最大的面积是(  )
A、
3
2
B、
2
2
C、
3
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角△ABC中,a,b,c分别是角A,B,C的对边,
3
acosA=bsin2A.
(1)求角B的大小;
(2)若a+c=9,△ABC的面积为
15
3
4
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
nx2+2
3x+m
是奇函数,且f(2)=
5
3

(1)求实数m和n的值;
(2)判断函数f(x)在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程(x-y-3)(x+y)=0所表示的图形是(  )
A、两条互相平行的直线
B、两条互相垂直的直线
C、一个点(
3
2
,-
3
2
D、过点(
3
2
,-
3
2
)的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
0≤x≤1
0≤y≤1
y≥kx-1
,若z=kx-y的最大值为1,则实数k的取值范围是(  )
A、k=1B、k≤1
C、k≥1D、0≤k≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

某品牌空调在元旦期间举行促销活动,所示的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是(  )
A、13B、14C、15D、16

查看答案和解析>>

同步练习册答案