精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆的左、右焦点,P为椭圆上的任意一点,满足|PF1|+|PF2|=8,△PF1F2的周长为12,
(Ⅰ)求椭圆的方程;
(Ⅱ)求的最大值和最小值;
(Ⅲ)已知点A(8,0),B(2,0),是否存在过点A的直线l与椭圆交于不同的两点C,D,使得|BC|=|BD|?若存在,求直线的方程;若不存在,请说明理由。
解:(Ⅰ)由题设2a=8,2a+2c=12,
则a=4,c=2,b2=12,
所以椭圆的方程是
(Ⅱ)易知F1=(-2,0),F2(2,0),
设P(x,y),


因为x∈[-4,4],所以x2∈[0,16],8≤≤12,
点P为椭圆短轴端点时,有最小值8;
点P为椭圆长轴端点时,有最大值12。
(Ⅲ)当直线l的斜率不存在时,直线l与椭圆无交点,所以若直线l存在,则直线l的斜率也存在,
设直线l的斜率为k.则直线l的方程为y=k(x-8),
由方程组

设交点C(x1,y1)、D(x2,y2),CD的中点为T(x0,y2),


因为|BC|=|BD|,则BT⊥CD,
于是
方程无解,所以不存在满足题目要求的直线l。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
短轴长为2,P(x0,y0)(x0≠±a)是椭圆上一点,A,B分别是椭圆的左、右顶点,直线PA,PB的斜率之积为-
1
4

(1)求椭圆的方程;
(2)当∠F1PF2为钝角时,求P点横坐标的取值范围;
(3)设F1,F2分别是椭圆的左右焦点,M、N是椭圆右准线l上的两个点,若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年丰台区二模)(14分)

设F1、F2分别是椭圆的左、右焦点。

   (I)若M是该椭圆上的一个动点,求的最大值和最小值;

    (II)设过定点(0,2)的直线l与椭圆交于不同两点A、B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为          .

查看答案和解析>>

科目:高中数学 来源:2009年上海市南汇区高考数学二模试卷(文科)(解析版) 题型:解答题

设F1、F2分别是椭圆的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求的最大值和最小值;
(3)若P是该椭圆上的一个动点,点A(5,0),求线段AP中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州市高三上学期第3次月考理科数学试卷(解析版) 题型:填空题

设F1、F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为                   .

 

查看答案和解析>>

同步练习册答案