精英家教网 > 高中数学 > 题目详情
直线x=0,x=2,y=0与曲线y=x2+1围成的曲边梯形,将区间[0,2]5等分,按照区间左端点和右端点估计梯形面积分别为
 
 
考点:定积分在求面积中的应用
专题:导数的综合应用
分析:根据区间左端点和右端点对应的小曲边梯形近似为小矩形,由此利用5个小矩形的面积代替曲边梯形的面积.
解答: 解:将区间[0,2]5等分,每个区间长度为0.4,按照区间左端点和右端点对应的小曲边梯形的面积近似为小矩形的面积,
所以按照区间左端点和右端点估计梯形面积分别为0.4×(0.42+1)×5和0.4×(22+1)×5,即为2.32和10.
故答案为2.32;10.
点评:本题考查了曲边梯形面积的求法,利用了分割和近似求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(log2x)=
x
x2+1

(1)求f(x)的解析式;
(2)若f(2x2-λx)≥
2
5
对任意x∈[
1
2
,1]恒成立,求常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(-2,0),F(1,0),定直线l:x=4,动点P与点F的距离是它到直线l的距离的
1
2
.设点P的轨迹为C,过点F的直线交C于D、E两点,直线AD、AE与直线l分别相交于M、N两点.
(1)求C的方程;
(2)试判断以线段MN为直径的圆是否过点F,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)满足对一切实数,恒有f(x)+f(-x)=x2且在(-∞,0)上单调递增,若f(2-a)-f(a)>2-2a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=an+n+2n(n∈N*),则an等于(  )
A、
n(n-1)
2
+2n-1-1
B、
n(n-1)
2
+2n-1
C、
n(n+1)
2
+2n+1-1
D、
n(n-1)
2
+2n+1-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=6lnx+ax2-10ax+25a,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)求a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是圆F1:(x+1)2+y2=8上任意一点,又F2(1,0),直线m分别与线段F1P,F2P交于M,N两点,且
MN
=
1
2
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|.
(1)求点M的轨迹C的方程;
(2)直线x=my+2与椭圆交于A、B两点,点D在椭圆上,且
OA
+
OB
OD
,E(-
2
m
m-2
m
),设△EAB的面积为S,若0<S≤1,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥的侧棱长为2
3
,侧棱与底面所成角为60°,则该四棱锥的高为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(Ⅰ) 求证:BE∥平面PDF;
(Ⅱ)求证:平面PDF⊥平面PAB;
(Ⅲ)求平面PAB与平面PCD所成的锐二面角的大小.

查看答案和解析>>

同步练习册答案