精英家教网 > 高中数学 > 题目详情
16.已知双曲线的左、右焦点为F1和F2,在左支上过点F1的弦AB的长为10,若2a=9,则△ABF2的周长为(  )
A.16B.26C.21D.38

分析 由双曲线的定义可得AF2+BF2 =28,△ABF2的周长是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,计算可得答案.

解答 解:由双曲线的定义可得 AF2-AF1=2a,BF2 -BF1=2a,
∴AF2+BF2 -AB=4a=18,即AF2+BF2 -10=18,AF2+BF2 =28.
△ABF2(F2为右焦点)的周长是 ( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=28+10=38.
故选:D.

点评 本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,求出AF2+BF2 =28是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知f(x)=x3-6x,过点A(2,m)(m≠-4)可作曲线y=f(x)的三条切线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点Q(2,1)的双曲线方程是 (  )
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{2}$-y2=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若“任意x∈R,不等式x2+1>a恒成立”是真命题,则a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.椭圆$\frac{y^2}{16}+\frac{x^2}{9}=1$的焦点为F1、F2,P为椭圆上不同于长轴端点的一点,则△PF1F2的周长为8+2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论中,不正确的是(  )
A.平面上一定存在直线B.平面上一定存在曲线
C.曲面上一定不存在直线D.曲面上一定存在曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-a|,g(x)=x2
(1)当a=$\frac{1}{4}$时,求不等式f(x)>g(x)的解集;
(2)设a>0,且当x∈[1,+∞)时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知幂函数$y=({m^2}-3m-3){x^{\frac{m}{3}}}$是偶函数,则实数m的值是(  )
A.4B.-1C.$\frac{{3+\sqrt{21}}}{2}$D.4或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ln(x2-x-12)的定义域为集合A,集合B=$\left\{{x|\frac{8}{x+2}>1}\right\}$.请你写出一个不等式,使它的解集为∁UA∩B,并说明理由.

查看答案和解析>>

同步练习册答案