精英家教网 > 高中数学 > 题目详情
设P、A、B、C是球O表面上的四点,PA、PB、PC两两垂直,且PA=1、PB=
6
、PC=3,则球O的表面积是
16π
16π
,体积是
32
3
π
32
3
π
分析:由已知中P、A、B、C是球O表面上的四点,PA、PB、PC两两垂直,可得三棱锥P-ABC的外接球,即为以PA、PB、PC为长、宽、高的长方体的外接球,求出球半径后,分别代入表面积公式,和体积公式,可得答案.
解答:解:∵PA、PB、PC两两垂直,
故三棱锥P-ABC的外接球,即为以PA、PB、PC为长、宽、高的长方体的外接球
故2R=
PA2+PB2+PC2
=4
∴R=2
则球的表面积S=4πR2=16π,
球的体积V=
4
3
πR3
=
32
3
π,
故答案为:16π,
32
3
π
点评:本题考查的知识点是球的体积和表面积,球内接多面体,其中根据已知分析出三棱锥P-ABC的外接球,即为以PA、PB、PC为长、宽、高的长方体的外接球,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,且PA=1,PB=
2
,PC=
6
,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,PA=1,PB=
6
,PC=3,则球O的体积为
32π
3
32π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两互相垂直,且PA=3,PB=4,PC=5,则球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,且PA=3,PB=4,PC=5,则球的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P,A,B,C是球O表面上的四点,满足PA,PB,PC两两相互垂直,且PA=PB=1,PC=2,则球O的表面积是
 

查看答案和解析>>

同步练习册答案