精英家教网 > 高中数学 > 题目详情

(12分)如图,为空间四点,且.等边三角形为轴转动.
 
(Ⅰ)当平面平面时,求
(Ⅱ)当△转动时,是否总有?证明你的结论.


解:1、取AB的中点为O,连结DO 、CO,
则∠DOC是其二面角的平面角且是直角

OD= 

∠DOC是直角
OC=,则得DC=………………………………….
2、AB ⊥OC,AB⊥OD且AC 与PA相交,,所以
AB⊥ 平面ODC,所以得证。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四 边形EFGH的面积为
 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(天津卷解析版) 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四 边形EFGH的面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四 边形EFGH的面积为______.
精英家教网

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四 边形EFGH的面积为______.
精英家教网

查看答案和解析>>

同步练习册答案