£¨2007•ÑîÆÖÇø¶þÄ££©£¨Àí£©ÉèбÂÊΪk1µÄÖ±ÏßL½»ÍÖÔ²C£º
x2
2
+y2=1
ÓÚA¡¢BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êÔ­µã£¬¼ÙÉèk1¡¢k2¶¼´æÔÚ£©£®
£¨1£©Çók1?k2µÄÖµ£®
£¨2£©°ÑÉÏÊöÍÖÔ²CÒ»°ã»¯Îª
x2
a2
+
y2
b2
=1

£¨a£¾b£¾0£©£¬ÆäËüÌõ¼þ²»±ä£¬ÊÔ²ÂÏëk1Óëk2¹Øϵ£¨²»ÐèÒªÖ¤Ã÷£©£®ÇëÄã¸ø³öÔÚË«ÇúÏß
x2
a2
-
y2
b2
=1
£¨a£¾0£¬b£¾0£©ÖÐÏàÀàËƵĽáÂÛ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©·ÖÎö£¨2£©ÖеÄ̽¾¿½á¹û£¬²¢×÷³ö½øÒ»²½¸ÅÀ¨£¬Ê¹ÉÏÊö½á¹û¶¼ÊÇÄãËù¸ÅÀ¨ÃüÌâµÄÌØÀý£®
Èç¹û¸ÅÀ¨ºóµÄÃüÌâÖеÄÖ±ÏßL¹ýÔ­µã£¬PΪ¸ÅÀ¨ºóÃüÌâÖÐÇúÏßÉÏÒ»¶¯µã£¬½èÖúÖ±ÏßL¼°¶¯µãP£¬ÇëÄãÌá³öÒ»¸öÓÐÒâÒåµÄÊýѧÎÊÌ⣬²¢ÓèÒÔ½â¾ö£®
·ÖÎö£º£¨1£©ÉèÖ±Ïß·½³ÌΪy=k1x+b£¬´úÈëÍÖÔ²·½³Ì£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊý¹ØϵÇóÏÒÖеãMµÄ×ø±êΪ(-
2bk1
1+2k12
£¬
2b
1+2k12
)
£¬´úÈë¿ÉµÃk2=-
1
2k1
£¬´Ó¶ø¿ÉÇó
£¨·¨¶þ£©£¨ÀûÓõã²î·¨£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãM£¨x0£¬y0£©£¬ÓÉ
1
2
x12+y12=1
Óë
1
2
x22+y22=1
×÷²îµÃ -
1
2
=
(y2-y1)(y2+y1)
(x2-x1)(x2+x1)
¿ÉÇó
£¨2£©ÒÑ֪бÂÊΪK1µÄÖ±ÏßL½»Ë«ÇúÏß
x2
a2
+
y2
b2
=1
£¨a£¾0£¬b£¾0£©ÓÚA£¬BÁ½µã£¬µãM ΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êÔ­µã£¬¼ÙÉèK1¡¢k2¶¼´æÔÚ£©£®
Ôòk1£¬k2?µÄֵΪ
b2
a2

£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k1x+d£¬´úÈë
x2
a2
+
y2
b2
=1
£¨£¨a£¾0£¬b£¾0£©·½³Ì²¢Õû£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ´úÈë¿ÉÇók1k2=
b2
a2

£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãÖеãM£¨x0£¬y0£©ÓɵãA£¬BÔÚË«ÇúÏßÉÏ£¬ÔòÀûÓõã²î·¨¿ÉÇó
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx2+ny2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êÔ­µã£¬¼ÙÉèk1£¬k2¡¢¶¼´æÔÚ£©£¬Ôòk1k2=-
m
n
£®
½â´ð£º£¨½âÒ»£©£º£¨1£©ÉèÖ±Ïß·½³ÌΪy=k1x+b£¬´úÈëÍÖÔ²·½³Ì²¢ÕûÀíµÃ£º£¨1+2k12£©x2+4k1bx+2b2-2=0£¬£¨2·Ö£©
x1+x2=-
4k1b
1+2k2
£¬ÓÖÖеãMÔÚÖ±ÏßÉÏ£¬ËùÒÔ
y1+y2
2
=k1
x1+x2
2
)+b

´Ó¶ø¿ÉµÃÏÒÖеãMµÄ×ø±êΪ(-
2bk1
1+2k12
£¬
2b
1+2k12
)
£¬k2=-
1
2k1
£¬ËùÒÔk1k2=-
1
2
£®£¨4·Ö£©
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãM£¨x0£¬y0£© Ôòx0=
x1+x2
2
£¬y0=
y1+y2
2

K2=
y0
x0
=
y1+y2
x1+x2
£¬k1=
y2-y1
x2-x1
   £¨2·Ö£©
ÓÖ
1
2
x12+y12=1
Óë
1
2
x22+y22=1
×÷²îµÃ  -
1
2
=
(y2-y1)(y2+y1)
(x2-x1)(x2+x1)

ËùÒÔ K1K2=-
1
2
            £¨4·Ö£©
£¨2£©¶ÔÓÚÍÖÔ²£¬K1K2=-
b2
a2
  £¨6·Ö£©
ÒÑ֪бÂÊΪK1µÄÖ±ÏßL½»Ë«ÇúÏß
x2
a2
+
y2
b2
=1
£¨a£¾0£¬b£¾0£©ÓÚA£¬BÁ½µã£¬µãM ÎªÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êÔ­µã£¬¼ÙÉèK1¡¢k2¶¼´æÔÚ£©£®
Ôòk1£¬k2?µÄֵΪ
b2
a2
£® £¨8·Ö£©
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k1x+d£¬´úÈë
x2
a2
+
y2
b2
=1
£¨£¨a£¾0£¬b£¾0£©·½³Ì²¢ÕûÀíµÃ£º£¨b2-a2k12£©x2-2k1a2dx-£¨ad£©2-£¨ab£©2=0
1
2
(y1+y2)=
db2
b2-a2k12
£¬
ËùÒÔK2=
y0
x0
=
y1+y2
x1+x2
=
b2
k1a2
£¬k1=
y2-y1
x2-x1
£¨2·Ö£©£¬¼´k1k2=
b2
a2
     £¨10·Ö£©
£¨½â¶þ£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãÖеãM£¨x0£¬y0£©
Ôòx0=
x1+x2
2
£¬y0=
y1+y2
2
£¬K2=
y0
x0
=
y1+y2
x1+x2
£¬k1=
y2-y1
x2-x1
£¨2·Ö£©
ÓÖÒòΪµãA£¬BÔÚË«ÇúÏßÉÏ£¬Ôò
x12
a2
-
y12
b2
=1
Óë
x22
a2
-
y22
b2
=1
×÷²îµÃ
a2
b2
=
(y2-y1)(y2+y1)
(x2-x1)(x2+x1
=k1k2    ¼´k1k2=
b2
a2
 £¨10·Ö£©
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx2+ny2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk2£¨ÆäÖÐOΪ×ø±êÔ­µã£¬¼ÙÉèk1£¬k2¡¢¶¼´æÔÚ£©£¬Ôòk1k2=-
m
n
£®£¨12·Ö£©
Ìá³öÎÊÌâÓë½â¾öÎÊÌâÂú·Ö·Ö±ðΪ£¨3·Ö£©£¬Ìá³öÒâÒå²»´óµÄÎÊÌâ²»µÃ·Ö£¬½â¾öÎÊÌâµÄ·ÖÖµ²»µÃ³¬¹ýÌá³öÎÊÌâµÄ·ÖÖµ£®
Ìá³öµÄÎÊÌâÀýÈ磺ֱÏßL¹ýÔ­µã£¬PΪ¶þ´ÎÇúÏßÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬µ±PÒìÓÚA£¬BÁ½µãʱ£¬Èç¹ûÖ±ÏßPA£¬PBµÄбÂʶ¼´æÔÚ£¬ÔòËüÃÇбÂʵĻýΪÓëµãPÎ޹صĶ¨Öµ£®£¨15·Ö£©
½â·¨1£ºÉèÖ±Ïß·½³ÌΪy=kx£¬A£¬BÁ½µã×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨-x1£¬-y1£©£¬Ôòy1=kx1
°Ñy=kx´úÈëmx2+ny2=1µÃ£¨m+nk2£©x2=1£¬
KPA•KPB=
(y0-y1)(y0+y1)
(x0-x1)(x0+x1)
=
y02-y12
x02-x12
£¬
ËùÒÔKPA•KPB=
1-mx02
n
-
k2
m+nk2
x02-
1
m+nk2
=
m-m(m+nk2)x02
n(m+nk2)x02-n
=-
m
n
£¨18·Ö£©
Ìá³öµÄÎÊÌâµÄÀýÈ磺ֱÏßL£ºy=x£¬PΪ¶þ´ÎÇúÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£®ÊÔÎÊʹ¡ÏAPB=30¡ãµÄµãPÊÇ·ñ´æÔÚ£¿£¨13·Ö£©
ÎÊÌâÀýÈ磺1£©Ö±ÏßL¹ýÔ­µã£¬PΪ¶þ´ÎÇúÏßÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóPA+PBµÄÖµ£®
2£©Ö±Ïßl¹ýÔ­µã£¬PΪ¶þ´ÎÇúÏßmx2+ny2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóS¡÷PABµÄ×îÖµ£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÇúÏßµÄÏཻ¹ØϵµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÄܹ»ÓÉÍÖÔ²µÄÐÔÖʹéÄÉÍÆÀí µ½Ò»°ãµÄÇúÏß·½³Ì£¬¼°½ÏÇ¿µÄÂß¼­ÍÆÀíµÄÔËËãÄÜÁ¦
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÑîÆÖÇø¶þÄ££©ÒÑÖªº¯Êýf£¨n£©=log£¨n+1£©£¨n+2£©£¨nΪÕýÕûÊý£©£¬Èô´æÔÚÕýÕûÊýkÂú×㣺f£¨1£©•f£¨2£©•f£¨3£©¡­f£¨n£©=k£¬ÄÇôÎÒÃǽ«k½Ð×ö¹ØÓÚnµÄ¡°¶ÔÕûÊý¡±£®µ±n¡Ê[1£¬100]ʱ£¬Ôò¡°¶ÔÕûÊý¡±µÄ¸öÊýΪ
5
5
¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÑîÆÖÇø¶þÄ££©Í¬Ê±Âú×ãÈý¸öÌõ¼þ£º¢ÙÓз´º¯Êý£»¢ÚÊÇÆ溯Êý£»¢ÛÆ䶨ÒåÓòÓëÖµÓòÏàµÈµÄº¯ÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÑîÆÖÇø¶þÄ££©£¨ÎÄ£©É踴ÊýzÂú×ãz+
1
z
=
1
2
£¬Çóz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÑîÆÖÇø¶þÄ££©ÒÑÖªÕýËÄÀâ׶µÄµ×ÃæÃæ»ýΪ4cm2£¬Ìå»ýΪ4cm3£¬ÉèËüµÄ²àÃæÉϵÄб¸ßÓëµ×ÃæËù³É½ÇµÄ´óСΪ¦È£¬Ôòsin¦ÈµÄÖµÊÇ
3
10
10
£®
3
10
10
£®
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÑîÆÖÇø¶þÄ££©Ö±Ïß2x-y+1=0µÄÇãб½ÇΪ
arctan2
arctan2
£®£¨Ó÷´Èý½Çº¯Êý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸