·ÖÎö£º£¨1£©ÉèÖ±Ïß·½³ÌΪy=k
1x+b£¬´úÈëÍÖÔ²·½³Ì£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊý¹ØϵÇóÏÒÖеãMµÄ×ø±êΪ
(-£¬)£¬´úÈë¿ÉµÃ
k2=-£¬´Ó¶ø¿ÉÇó
£¨·¨¶þ£©£¨ÀûÓõã²î·¨£©ÉèµãA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÖеãM£¨x
0£¬y
0£©£¬ÓÉ
x12+y12=1Óë
x22+y22=1×÷²îµÃ
-=
(y2-y1)(y2+y1) |
(x2-x1)(x2+x1) |
¿ÉÇó
£¨2£©ÒÑ֪бÂÊΪK
1µÄÖ±ÏßL½»Ë«ÇúÏß
+=1£¨a£¾0£¬b£¾0£©ÓÚA£¬BÁ½µã£¬µãM ΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk
2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèK
1¡¢k
2¶¼´æÔÚ£©£®
Ôòk
1£¬k
2?µÄֵΪ
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k
1x+d£¬´úÈë
+=1£¨£¨a£¾0£¬b£¾0£©·½³Ì²¢Õû£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ´úÈë¿ÉÇó
k1k2= £¨½â¶þ£©ÉèµãA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÖеãÖеãM£¨x
0£¬y
0£©ÓɵãA£¬BÔÚË«ÇúÏßÉÏ£¬ÔòÀûÓõã²î·¨¿ÉÇó
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk
1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx
2+ny
2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk
2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk
1£¬k
2¡¢¶¼´æÔÚ£©£¬Ôò
k1k2=-£®
½â´ð£º£¨½âÒ»£©£º£¨1£©ÉèÖ±Ïß·½³ÌΪy=k
1x+b£¬´úÈëÍÖÔ²·½³Ì²¢ÕûÀíµÃ£º£¨1+2k
12£©x
2+4k
1bx+2b
2-2=0£¬£¨2·Ö£©
x1+x2=-£¬ÓÖÖеãMÔÚÖ±ÏßÉÏ£¬ËùÒÔ
=k1•)+b´Ó¶ø¿ÉµÃÏÒÖеãMµÄ×ø±êΪ
(-£¬)£¬
k2=-£¬ËùÒÔ
k1k2=-£®£¨4·Ö£©
£¨½â¶þ£©ÉèµãA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÖеãM£¨x
0£¬y
0£© Ôò
x0=£¬
y0=K2==
£¬
k1= £¨2·Ö£©
ÓÖ
x12+y12=1Óë
x22+y22=1×÷²îµÃ
-=
(y2-y1)(y2+y1) |
(x2-x1)(x2+x1) |
ËùÒÔ
K1K2=- £¨4·Ö£©
£¨2£©¶ÔÓÚÍÖÔ²£¬
K1K2=- £¨6·Ö£©
ÒÑ֪бÂÊΪK
1µÄÖ±ÏßL½»Ë«ÇúÏß
+=1£¨a£¾0£¬b£¾0£©ÓÚA£¬BÁ½µã£¬µãM ΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk
2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèK
1¡¢k
2¶¼´æÔÚ£©£®
Ôòk
1£¬k
2?µÄֵΪ
£® £¨8·Ö£©
£¨½âÒ»£©ÉèÖ±Ïß·½³ÌΪy=k
1x+d£¬´úÈë
+=1£¨£¨a£¾0£¬b£¾0£©·½³Ì²¢ÕûÀíµÃ£º£¨b
2-a
2k
12£©x
2-2k
1a
2dx-£¨ad£©
2-£¨ab£©
2=0
(y1+y2)=£¬
ËùÒÔ
K2==
=
£¬
k1= £¨2·Ö£©£¬¼´
k1k2= £¨10·Ö£©
£¨½â¶þ£©ÉèµãA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÖеãÖеãM£¨x
0£¬y
0£©
Ôò
x0=£¬
y0=£¬
K2==
£¬
k1= £¨2·Ö£©
ÓÖÒòΪµãA£¬BÔÚË«ÇúÏßÉÏ£¬Ôò
-=1Óë
-=1×÷²îµÃ
=
(y2-y1)(y2+y1) |
(x2-x1)(x2+x1) |
=k
1k
2 ¼´
k1k2= £¨10·Ö£©
£¨3£©¶Ô£¨2£©µÄ¸ÅÀ¨£ºÉèбÂÊΪk
1µÄÖ±ÏßL½»¶þ´ÎÇúÏßC£ºmx
2+ny
2=1£¨mn¡Ù0£©ÓÚA£¬BÁ½µã£¬µãMΪÏÒABµÄÖе㣬ֱÏßOMµÄбÂÊΪk
2£¨ÆäÖÐOΪ×ø±êԵ㣬¼ÙÉèk
1£¬k
2¡¢¶¼´æÔÚ£©£¬Ôò
k1k2=-£®£¨12·Ö£©
Ìá³öÎÊÌâÓë½â¾öÎÊÌâÂú·Ö·Ö±ðΪ£¨3·Ö£©£¬Ìá³öÒâÒå²»´óµÄÎÊÌâ²»µÃ·Ö£¬½â¾öÎÊÌâµÄ·ÖÖµ²»µÃ³¬¹ýÌá³öÎÊÌâµÄ·ÖÖµ£®
Ìá³öµÄÎÊÌâÀýÈ磺ֱÏßL¹ýԵ㣬PΪ¶þ´ÎÇúÏßÏßmx
2+ny
2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬µ±PÒìÓÚA£¬BÁ½µãʱ£¬Èç¹ûÖ±ÏßPA£¬PBµÄбÂʶ¼´æÔÚ£¬ÔòËüÃÇбÂʵĻýΪÓëµãPÎ޹صĶ¨Öµ£®£¨15·Ö£©
½â·¨1£ºÉèÖ±Ïß·½³ÌΪy=kx£¬A£¬BÁ½µã×ø±ê·Ö±ðΪ£¨x
1£¬y
1£©¡¢£¨-x
1£¬-y
1£©£¬Ôòy
1=kx
1°Ñy=kx´úÈëmx
2+ny
2=1µÃ£¨m+nk
2£©x
2=1£¬
K
PA•K
PB=
(y0-y1)(y0+y1) |
(x0-x1)(x0+x1) |
=
£¬
ËùÒÔK
PA•K
PB=
=
m-m(m+nk2)x02 |
n(m+nk2)x02-n |
=
-£¨18·Ö£©
Ìá³öµÄÎÊÌâµÄÀýÈ磺ֱÏßL£ºy=x£¬PΪ¶þ´ÎÇúÏßmx
2+ny
2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£®ÊÔÎÊʹ¡ÏAPB=30¡ãµÄµãPÊÇ·ñ´æÔÚ£¿£¨13·Ö£©
ÎÊÌâÀýÈ磺1£©Ö±ÏßL¹ýԵ㣬PΪ¶þ´ÎÇúÏßÏßmx
2+ny
2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóPA+PBµÄÖµ£®
2£©Ö±Ïßl¹ýԵ㣬PΪ¶þ´ÎÇúÏßmx
2+ny
2=1£¨mn¡Ù0£©ÉÏÒ»¶¯µã£¬ÉèÖ±ÏßL½»ÇúÏßÓÚA£¬BÁ½µã£¬ÇóS
¡÷PABµÄ×îÖµ£®