精英家教网 > 高中数学 > 题目详情
如图,过圆x2+y2=4与x轴的两个交点A,B,作圆的切线AC,BD,再过圆上任意一点H作圆的切线,交AC,BD于C,D两点,设AD,BC的交点为R,
(Ⅰ)求动点R的轨迹E的方程;
(Ⅱ)过曲线E的右焦点作直线l交曲线E于M,N两点,交y轴于P点,且记,求证:λ12为定值。
解:(Ⅰ)设点H的坐标为,则
由题意,可知,且以H为切点的圆的切线的斜率为
故切线方程为
展开得
即以H为切点的圆的切线方程为
,将x=±2代入上述方程可得点C,D的坐标分别为
, ①
,②
将两式相乘并化简可得动点R的轨迹E的方程为,即
(Ⅱ)由(Ⅰ)知,轨迹E为焦点在x轴上的椭圆且其右焦点为
(ⅰ)当直线l斜率为0时,M,N,P三点在x轴上,不妨设,且
此时有
所以,
(ⅱ)当斜率不为0时,设直线MN的方程为
则点P的坐标为
且设点
联立,消去x,得


(定值)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,过圆x2+y2=4与x的两个交点A、B,作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD于C、D两点,设AD、BC的交点为R.
(1)求动点R的轨迹E方程;
(2)过曲线E的右焦点作直线l交曲线E于M、N两点,交y轴于P点,记
PM
=λ1
MF
PN
=λ2
NF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的交点为R.
(I)求动点R的轨迹E的方程;
(II)设E的上顶点为M,直线l交曲线E于P、Q两点,问:是否存在这样的直线l,使点G(1,0)恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

如图,过圆x2+y2=4与x轴的两个交点A、B,作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD于C、D两点,设AD、BC的交点为R,
(1)求动点R的轨迹E的方程;
(2)过曲线E的右焦点F作直线l交曲线E于M、N两点,交y轴于P点,且记12,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源:2011年山东省临沂市高考数学二模试卷(理科)(解析版) 题型:解答题

如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的交点为R.
(I)求动点R的轨迹E的方程;
(II)设E的上顶点为M,直线l交曲线E于P、Q两点,问:是否存在这样的直线l,使点G(1,0)恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案