精英家教网 > 高中数学 > 题目详情

近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录。为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润是大?

(1),().
(2)当时,促销费用投入1万元时,厂家的利润最大;
时,促销费用投入万元时,厂家的利润最大 .

解析试题分析:(1)由题意得到, 将代入化简即得
,().
(2)将原函数变形,应用基本不等式,
当且仅当时,上式取等号.根据,讨论,的不同情况,确定最大利润.
试题解析:(1)由题意知,
代入化简得:
,(),                               6分
(2)
当且仅当时,上式取等号.                       9分
时,促销费用投入1万元时,厂家的利润最大;
时,上单调递增,所以在时,函数有最大值.促销费用投入万元时,厂家的利润最大 .
综上述,当时,促销费用投入1万元时,厂家的利润最大;
时,促销费用投入万元时,厂家的利润最大 .                  12分
考点:函数的应用问题,基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分)某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)若函数在区间上单调,求的取值范围;
(2)若对任意,都有成立,且函数的图象经过点
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(为实常数)为奇函数,函数().
(1)求的值;
(2)求上的最大值;
(3)当时,对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是正数,
(Ⅰ)若成等差数列,比较的大小;
(Ⅱ)若,则三个数中,哪个数最大,请说明理由;
(Ⅲ)若),且的整数部分分别是求所有的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数上的值域;
(2)证明对于每一个,在上存在唯一的,使得
(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的最大值
(2)求的最小值。

查看答案和解析>>

同步练习册答案