精英家教网 > 高中数学 > 题目详情
若a、b∈R,有下列不等式:①a2+3>2a;②a2+b2≥2(a-b-1);③a5+b5>a3b2+a2b3;④a+
1
a
≥2.其中一定成立的是______.
①a2+3-2a=(a-1)2+2>0,
∴a2+3>2a;
②a2+b2-2a+2b+2=(a-1)2+(b+1)2≥0,
∴a2+b2≥2(a-b-1);
③a5+b5-a3b2-a2b3=a3(a2-b2)+b3(b2-a2
=(a2-b2)(a3-b3)=(a+b)(a-b)2(a2+ab+b2).
∵(a-b)2≥0,a2+ab+b2≥0,但a+b符号不确定,
∴a5+b5>a3b2+a2b3不正确;
④a∈R时,a+
1
a
≥2不正确.
故答案为:①②.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a、b∈R,有下列不等式:①a2+3>2a;②a2+b2≥2(a-b-1);③a5+b5>a3b2+a2b3;④a+
1a
≥2.其中一定成立的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b∈R,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a,b中至少有一个数大于1”的条件有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意x∈A,y∈B,(A、B?R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能够成为关于的x、y的广义“距离”的函数的所有序号是(  )
A、①B、②C、③D、④

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:6.2 不等式的证明1(解析版) 题型:解答题

若a、b∈R,有下列不等式:①a2+3>2a;②a2+b2≥2(a-b-1);③a5+b5>a3b2+a2b3;④a+≥2.其中一定成立的是   

查看答案和解析>>

同步练习册答案