精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,双曲线经过点,其中一条近线的方程为,椭圆与双曲线有相同的焦点椭圆的左焦点,左顶点和上顶点分别为FAB,且点F到直线AB的距离为

求双曲线的方程;

求椭圆的方程.

【答案】(1)(2)

【解析】

由双曲线经过点,可得m;再由渐近线方程可得mn的方程,求得n,即可得到所求双曲线的方程;

由椭圆的abc的关系式,求得FAB的坐标,可得直线AB的方程,由点到直线的距离公式,可得ab的关系式,解方程可得ab,进而得到所求椭圆方程.

解:双曲线经过点

可得

其中一条近线的方程为,可得

解得

即有双曲线的方程为

椭圆与双曲线有相同的焦点,

可得

椭圆的左焦点,左顶点和上顶点分别为

由点F到直线AB的距离为,可得

,化为

解得

则椭圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:在三棱锥中,是直角三角形,

,点分别为的中点.

1)求证:

2)求直线与平面所成角的大小;

3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,以极点O为中心,将点P逆时针旋转90°得到点Q,设点Q的轨迹为曲线C2

(Ⅰ)求曲线C1,C2的极坐标方程;

(Ⅱ)射线(ρ>0)与曲线C1,C2分别交于A,B两点,设定点M(2,0),求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销,顾客仅可以从以下两种优惠方案中选择一种:方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(:所有小球仅颜色有区别)

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得优惠的概率;

(2)若某顾客选择方案二,请分别计算该顾客获得半价优惠的概率、7折优惠的概率以及8折优惠的概率;

(3)若小明的购物金额为320,你觉得小明应该选取哪个方案,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为1.

正方体中哪些棱所在的直线与直线是异面直线?

若M,N分别是 的中点,求异面直线MN与BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为是椭圆上半部分的动点,连接和长轴的左右两个端点所得两直线交正半轴于两点(点的上方或重合).

1)当面积最大时,求椭圆的方程;

2)当时,在轴上是否存在点使得为定值,若存在,求点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),过点作斜率为的直线与圆交于两点.

(1)若圆心到直线的距离为,求的值;

(2)求线段中点的轨迹方程.

查看答案和解析>>

同步练习册答案