精英家教网 > 高中数学 > 题目详情

【题目】名学生中,已知任意三人中有两人互相认识,任意四人中有两人互相不认识,则的最大值为______.

【答案】8

【解析】

时满足要求.

只需证明:.

首先证明以下两种情形不可能出现.

(1)若某学生至少认识6人,由拉姆塞定理,知这6人中存在3人要么互相认识,要么3人互相不认识.若为前者,则与这3人共有4人两两互相认识,这与已知矛盾;若为后者,这与已知3人中有两人互相认识矛盾.

(2)若某学生至多认识人,则剩下至少4人均与不认识,从而,这4人两两认识,与已知矛盾.

其次,当时,(1)、(2)必有一种情形出现,这是不可能的.

时,要使(1)、(2)均不出现,只能每名学生恰认识其他5人,于是,这9人产生的朋友对(互相认识的对人)的数目为,矛盾.

综上,的最大值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的折线图为某小区小型超市今年1月份到5月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法正确的是(

A.该超市这五个月中的营业额一直在增长;

B.该超市这五个月的利润一直在增长;

C.该超市这五个月中五月份的利润最高;

D.该超市这五个月中的营业额和支出呈正相关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0123的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;若取出的两个小球上数字之积小于1,则奖励饮料一瓶.

1)求每对亲子获得飞机玩具的概率;

2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50/,紫龙卧雪30/,朱砂红霜40/.

1)设,试建立日效益总量关于的函数关系式;

2)试探求为何值时,日效益总量达到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级共有800名学生参加了数学测验(满分150分),已知这800名学生的数学成绩均不低于90分,将这800名学生的数学成绩分组如:,得到的频率分布直方图如图所示,则下列说法中正确的是( )

;②这800名学生中数学成绩在110分以下的人数为160; ③这800名学生数学成绩的中位数约为121.4;④这800名学生数学成绩的平均数为125.

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设今天是423日,某市未来六天的空气质量预报情况如下图所示.该市有甲、乙、丙三人计划在未来六天(424日~429日)内选择一天出游,甲只选择空气质量为优的一天出游,乙不选择周一出游,丙不选择明天出游,且甲与乙不选择同一天出游,则这三人出游的不同方法数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.

(1)求椭圆的方程;

(2)不经过点的直线)与椭圆交于两点,关于原点的对称点为(与点不重合),直线轴分别交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知曲线的极坐标方程为,以极点为直角坐标原点,以极轴为轴的正半轴建立平面直角坐标系,将曲线向左平移个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的,纵坐标保持不变,得到曲线

(1)求曲线的直角坐标方程;

(2)已知直线的参数方程为,(为参数),点为曲线上的动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰直角△内接于抛物线(),其中为抛物线的顶点,,△的面积是16.

1)求抛物线的方程;

2)抛物线的焦点为,过的直线交抛物线于两点,交轴于点,若,证明:是一个定值.

查看答案和解析>>

同步练习册答案