精英家教网 > 高中数学 > 题目详情
从4名男生和2名女生中任选3人参加演讲比赛.
(1)求所选3人都是男生的概率;
(2)求所选3人中恰有1名女生的概率;
(3)求所选3人中至少有1名女生的概率.
分析:(1)由题意知本题是一个古典概型,试验所包含的所有事件是从6人中选3人共有C63种结果,而满足条件的事件是所选3人都是男生有C43种结果,根据古典概型公式得到结果.
(2)由题意知本题是一个古典概型,试验所包含的所有事件是从6人中选3人共有C63种结果,而满足条件的事件是所选3人中恰有1名女生有C21C42种结果,根据古典概型公式得到结果.
(3)由题意知本题是一个古典概型,试验所包含的所有事件是从6人中选3人共有C63种结果,而满足条件的事件是所选3人中至少1名女生有C21C42+C22C41种结果,根据古典概型公式得到结果.
解答:解:(1)由题意知本题是一个古典概型,
∵试验所包含的所有事件是从6人中选3人共有C63种结果,
而满足条件的事件是所选3人都是男生有C43种结果,
∴根据古典概型公式得到
所选3人都是男生的概率为
C
3
4
C
3
6
=
1
5

(2)由题意知本题是一个古典概型,
∵试验所包含的所有事件是从6人中选3人共有C63种结果,
而满足条件的事件是所选3人中恰有1名女生有C21C42种结果,
∴根据古典概型公式得到
所选3人中恰有1名女生的概率为
C
1
2
C
2
4
C
3
6
=
3
5

(3)由题意知本题是一个古典概型,
∵试验所包含的所有事件是从6人中选3人共有C63种结果,
而满足条件的事件是所选3人中至少1名女生有C21C42+C22C41种结果,
∴根据古典概型公式得到
所选3人中至少有1名女生的概率为
C
1
2
C
2
4
+
C
2
2
C
1
4
C
3
6
=
4
5
点评:本小题考查等可能事件的概率计算及分析和解决实际问题的能力,正难则反是解题时要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,本题的最后一问可以采用对立事件来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是(  )
A、
1
5
B、
3
5
C、
4
5
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名男生和2名女生中任选3人值日,设随机变量ξ表示所选3人中女生的人数.
(Ⅰ)求ξ的分布列、数学期望Eξ;
(Ⅱ)求事件“所选3人中女生至少有1人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)从4名男生和2名女生中任选3人参加“上海市实验性、示范性高中”区级评估调研座谈会,设随机变量ξ表示所选3人中女生的人数,则ξ的数学期望为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求所选3人都是男生的概率;
(2)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

18.从4名男生和2名女生中任选3人参加演讲比赛.

(Ⅰ)求所选3人都是男生的概率;

(Ⅱ)求所选3人中恰有1名女生的概率;

(Ⅲ)求所选3人中至少有1名女生的概率.

查看答案和解析>>

同步练习册答案