精英家教网 > 高中数学 > 题目详情
已知命题p:在x∈(-∞,0]上有意义,命题q:函数y=lg(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,则a的取值范围   
【答案】分析:由函数在x∈(-∞,0]上有意义可得p;由函数y=lg(ax2-x+a)的定义域为R.可得ax2-x+a>0恒成立,结合二次函数的性质可求q,而p和q有且仅有一个正确即是①p正确而q不正确,②q正确而p不正确,两种情况可求a的范围
解答:解:x∈(-∞,0]时,3x∈(0,1],
∵函数在x∈(-∞,0]上有意义,
∴1-a•3x≥0,∴a≤
∴a≤1,
即使p正确的a的取值范围是:a≤1.(2分)
由函数y=lg(ax2-x+a)的定义域为R.可得ax2-x+a>0恒成立
(1)当a=0时,ax2-x+a=-x不能对一切实数恒大于0.
(2)当a≠0时,由题意可得,△=1-4a2<0,且a>0
∴a>
故q正确:a>.(4分)
①若p正确而q不正确,则,即a≤,(6分)
②若q正确而p不正确,则,即a>1,(8分)
故所求的a的取值范围是:(-∞,]∪(1,+∞).
故答案为:(-∞,]∪(1,+∞).
点评:本题考查命题的真假判断和应用,是基础题.解题时要认真审题,仔细解答,注意函数的定义域的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数f(x)=log
13
(x2-2ax+3a)
是区间[1,+∞)上的减函数.若命题“p?q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省连云港市东海高级中学高三(上)段考数学试卷(理科)(解析版) 题型:填空题

已知命题p:在x∈(-∞,0]上有意义,命题q:函数y=lg(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,则a的取值范围   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省连云港市东海高级中学高三(上)段考数学试卷(理科)(解析版) 题型:填空题

已知命题p:在x∈(-∞,0]上有意义,命题q:函数y=lg(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,则a的取值范围   

查看答案和解析>>

科目:高中数学 来源:2010年山东省潍坊市四县高考数学一模试卷(理科)(解析版) 题型:解答题

已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数是区间[1,+∞)上的减函数.若命题“p?q”是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案