精英家教网 > 高中数学 > 题目详情
17.定义在R上的偶函数f(x)满足,当x<0时,f(x)=$\frac{x}{x-1}$,则曲线y=f(x)在点(2,f(2))处的切线的斜率为$\frac{1}{9}$.

分析 设x>0,则f(x)=f(-x)=$\frac{-x}{-x-1}$=$\frac{x}{x+1}$,再求导数,即可得出结论.

解答 解:设x>0,则f(x)=f(-x)=$\frac{-x}{-x-1}$=$\frac{x}{x+1}$,
∴x>0,f′(x)=$\frac{1}{(x+1)^{2}}$,
∴f′(2)=$\frac{1}{9}$,
故答案为$\frac{1}{9}$.

点评 本题考查导数知识的运用,考查导数的几何意义,考查偶函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$则f(f(e))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设点M(3,t),若在圆O:x2+y2=6上存在两点A,B,使得∠AMB=90°,则t的取值范围是-$\sqrt{3}$≤t≤$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题p:?x∈R,2${\;}^{{x}^{2}-1}$<$\frac{1}{4}$,命题q:若M为曲线y2=4x2上一点,A($\frac{5}{2}$,0),则|MA|的最小值为$\sqrt{5}$,那么下列命题为真命题的是(  )
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}的前n项和为Sn,且S5=6,a2=1,则公差d等于(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{6}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}{2x+y-7≤0}\\{x≥2}\\{y≥1}\end{array}\right.$,则目标函数z=-x+y的最小值为(  )
A.-3B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在棱长均为2的正三棱柱ABC-A1B1C1中,点M是侧棱AA1的中点,点P、Q分别是侧面BCC1B1、底面ABC内的动点,且A1P∥平面BCM,PQ⊥平面BCM,则点Q的轨迹的长度为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和AA1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:CN∥平面AMP;
(Ⅲ)试判断直线BC1与PA能否垂直.若能垂直,求出PB的值;若不能垂直,请说明理由.

查看答案和解析>>

同步练习册答案