精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和Sn,若an+1+(-1)nan=n,则S40=420.

分析 由已知数列递推式可得a2k-1+a2k+a2k+1+a2k+2=4k+2.取k=1,3,5,…,19,作和得答案.

解答 解:由an+1+(-1)nan=n,
∴当n=2k时,有a2k+1+a2k=2k,①
当n=2k-1时,有a2k-a2k-1=2k-1,②
当n=2k+1时,有a2k+2-a2k+1=2k+1,③
①-②得:a2k+1+a2k-1=1,
①+③得:a2k+2+a2k=4k+1,
∴a2k-1+a2k+a2k+1+a2k+2=4k+2.
∴S40=4(1+3+…+19)+20=$4×\frac{(1+19)×10}{2}$+20=420.
故答案为:420.

点评 本题考查数列递推式,考查了数列前n项和的求法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.元代数学家朱世杰所著《四元玉鉴》一书,是中国古代数学的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛叠藏》第一问是:“今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贯一文,问底子每面几何?”据此,绘制如图所示程序框图,求得底面每边的果子数n为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次对昼夜温差大小与种子发芽数之间的研究中,研究人员获得了一组样本数据:
温差x(℃)131211108
发芽数y(颗)3026252316
(1)请根据上述数据,选取其中的前3组数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归直线方程是可靠的,请问(1)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知圆C:x2+y2=4和动直线l:x=my+1.
(1)证明:不论m为何值时,直线l与圆C都相交;
(2)若直线l与圆C相交于A,B,点A关于轴x的对称点为A1,试探究直线A1B与x轴是否交于一个定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为(  )
A.48里B.24里C.12里D.6里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设实数a,b满足a+2b=9.
(1)若|9-2b|+|a+1|<3,求a的取值范围;
(2)若a,b>0,且z=ab2,求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在三棱锥A-BCD中,△ABC与△BCD都是边长为6的正三角形,平面ABC⊥平面BCD,则该三棱锥的外接球的面积为60π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.4a5.25.9
y关于t的线性回归方程为y=0.5t+2.3,则a的值为(  )
A.4.5B.4.6C.4.7D.4.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R).
(1)判断函数f(x)的单调性,并用定义法证明;
(2)若a=1,求f(-5)+f(-3)+f(-1)+f(1)+f(3)+f(5)的值.

查看答案和解析>>

同步练习册答案