精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上确定一点E,使得PB∥平面ACE,并求 的值;
(2)在(1)条件下,求平面PAB与平面ACE所成锐二面角的余弦值.

【答案】
(1)解:连接BD交AC于O,

在△PBD中,过O作OE∥BP交PD于E,

∵OE平面ACE,PB平面ACE,

∴PB∥平面ACE,

∵AB=3,CD=2,∴


(2)解:以D为坐标原点,建立如图所示的空间直角坐标系,

则A(5,0,0),C(0,2,0),D(0,0,0),E(0,0,2),P(0,0,5),

=(5,﹣2,0), =(0,﹣2,2),

设平面ACE的一个法向量为n=(x,y,z),

,即

令z=5,则x=2,y=5,∴n=(2,5,5)

取PA的中点为F,连接DF,∵AD=PD,∴DF⊥PA,

又AB⊥平面PAD,∴AB⊥DF,则DF⊥平面PAB,

=( ,0, )是平面PAB的一个法向量,

∴cos< >= = =

∴平面PAB与平面ACE所成锐二面角的余弦值为


【解析】(1)连接BD交AC于O,过O作OE∥BP交PD于E,推导出PB∥平面ACE,由此能求出 的值.(2)以D为坐标原点,建立空间直角坐标系,利用向量法能求出平面PAB与平面ACE所成锐二面角的余弦值.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:

若以上表中频率作为概率,且每天的销售量相互独立.

(1)求5天中该种商品恰好有两天的日销售量为1.5吨的概率;

(2)已知每吨该商品的销售利润为2千元, 表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点DEN分别为棱PAPCBC的中点,M是线段AD的中点,PAAC=4,AB=2.

(1)求证:MN∥平面BDE

(2)求二面角CEMN的正弦值;

(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作y=ft),下表是某日各时的浪高数据:

th

0

3

6

9

12

15

18

21

24

ym

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测y=ft的曲线可近似地看成是函数y=Acosωtb的图象

1)根据以上数据,求出函数y=Acosωtb的最小正周期T、振幅A及函数表达式;

2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=mxα的图象经过点A(2,2).

(1)试比较2ln f(3)与3ln f(2)的大小;

(2)定义在R上的函数g(x)满足g(-x)=g(x), g(4+x)=g(4-x),且当x∈[0,4]时,

. 若关于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151个整数解,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则_____

【答案】

【解析】

分子分母同时除以,把目标式转为的表达式,代入可求.

,则

故答案为:

【点睛】

本题考查三角函数的化简求值,常用方法:(1)弦切互化法:主要利用公式, 形如等类型可进行弦化切;(2)“1”的灵活代换的关系进行变形、转化.

型】填空
束】
15

【题目】如图,正方体的棱长为1,中点,连接,则异面直线所成角的余弦值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是椭圆 在第一象限上的动点,过点P引圆x2+y2=4的两条切线PA、PB,切点分别是A、B,直线AB与x轴、y轴分别交于点M、N,则△OMN面积的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: =1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1 , 四边形ABCD的面积为S2 . (Ⅰ)当点B坐标为(﹣1,0)时,求k的值;
(Ⅱ)若S1= ,求线段AD的长;
(Ⅲ)求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有唯一零点,则a=

A. B. C. D.

查看答案和解析>>

同步练习册答案