精英家教网 > 高中数学 > 题目详情
5.将直线y=2x+1上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到的图形的方程是y=x+1.

分析 根据图象的伸缩变换规律可得答案.

解答 解:直线y=2x+1上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到的图形的方程是y=$\frac{1}{2}$×2x+1=x+1,
故答案为:y=x+1.

点评 本题考查函数图象的变换,熟练掌握有关图象的变换规律是解决该类题目的基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(log4x)2-log4x+5,x∈[1,16],求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.指出由正弦曲线y=sinx经过怎样的步骤可以得到正弦型曲线y=$\frac{1}{3}$sin(4x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用计算器求下列各式的值(精确到0.001):
(1)lg34.26     
(2)ln65.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=1+lgx,则f(10)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\sqrt{5-|3-2x|}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.椭圆$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一点M到一个焦点的距离是5,则它到另一个焦点的距离是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$({1,\frac{{\sqrt{2}}}{2}})$,离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)已知直线l1过椭圆C的右焦点F2交C于 M,N两点,点Q为直线l2:x=2上的点,且F2Q⊥l1,记直线MN与直线 OQ(O为原点)的交点为K,证明:MK=NK.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知,椭圆C:$\frac{{y}^{2}}{{m}^{2}}$+$\frac{{x}^{2}}{{n}^{2}}$=1(m>n>0)短轴长是1,离心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F (-$\sqrt{3}$,0)的直线交椭圆C于点M,N,G($\sqrt{3}$,0),求△GMN面积的最大值.

查看答案和解析>>

同步练习册答案