精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)若点在椭圆上,且四边形是矩形,求矩形的面积的最大值.

【答案】(1)(2)矩形面积的最大值为.

【解析】

(1)由椭圆过点,且离心率为,得到,进而可求出结果;

(2)先由题意知直线不垂直于轴,设直线,联立直线与椭圆方程,设,根据韦达定理和题中条件可求出;再求出的最大值即可得出结果.

解:(1)因为椭圆经过点,且离心率为

所以,又因为

可解得,焦距为.

所求椭圆的方程为.

(2)由题意知直线不垂直于轴,可设直线

,则

又因为

所以

化简可得.

所以

,则

所以.

,因为

所以上单调递减,所以.

设直线轴交于点

因为矩形面积

所以矩形面积的最大值为.

此时直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某些竞赛活动中,选手的最终成绩是将前面所有轮次比赛成绩求算术平均获得的.同学们知道这样一个事实:在所有轮次的成绩中,如果由高到低依次去掉一些高分,那么平均分降低;反之,如果由低到高依次去掉一些低分,那么平均分提高. 这两个事实可以用数学语言描述为:若有限数列满足,且不全相等,则(1)_______;(2)_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面.有下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①③B.①④C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为8的菱形,是等边三角形,二面角的余弦值为.

(Ⅰ)求证:

(Ⅱ)求直线与平面夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):

男:164 178 174 185 170 158 163 165 161 170

女:165 168 156 170 163 162 158 153 169 172

(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.

(2)请根据测量结果得到20名学生身高的中位数(单位:厘米),将男、女生身高不低于和低于的人数填入下表中,并判断是否有的把握认为男、女生身高有差异?

人数

男生

女生

身高

身高

参照公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

.024

6.635

7.879

10.828

(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆的直径,垂直圆所在的平面,是圆上的一点.

1)求证:平面 平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,其上一点在准线上的射影为,△恰为一个边长为4的等边三角形.

1)求抛物线的方程;

2)若过定点的直线交抛物线两点,为坐标原点)的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,求的值;

(Ⅱ)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥A-BPC中,MAB的中点,DPB的中点,且为正三角形.

1)求证:平面APC

2)若,求三棱锥D-BCM的体积.

查看答案和解析>>

同步练习册答案