【题目】已知椭圆:的左右焦点分别是,抛物线与椭圆有相同的焦点,点为抛物线与椭圆在第一象限的交点,且满足.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,设.若,求面积的取值范围.
【答案】(1) (2)
【解析】
(1)由题意可得点P的坐标为,然后求出,根据椭圆的定义可得,进而得到,于是可得椭圆的方程.(2)由题意直线的斜率不为0,设其方程为,代入椭圆方程后结合根与系数的关系得到,然后通过换元法求出的范围即可.
(1)由题意得抛物线的焦点坐标为,准线方程为.
∵,
∴点P到直线的距离为,从而点P的横坐标为,
又点P在第一象限内,
∴点P的坐标为.
∴,
∴,
∴.
∴,
∴椭圆的方程为.
(2)根据题意得直线的斜率不为0,设其方程为,
由 消去整理得,
显然.
设,则 ①
∵,即,
∴,
代入①消去得.
∵,
∴,
∴,解得.
由题意得.
令,则,
∴,
设,则在上单调递增,
∴,即,
∴.
即面积的取值范围为.
科目:高中数学 来源: 题型:
【题目】(题文)已知是直线上的动点,点的坐标是,过的直线与垂直,并且与线段的垂直平分线相交于点 .
(1)求点的轨迹的方程;
(2)设曲线上的动点关于轴的对称点为,点的坐标为,直线与曲线的另一个交点为(与不重合),是否存在一个定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论:
“直线l与平面平行”是“直线l在平面外”的充分不必要条件;
若p:,,则:,;
命题“设a,,若,则或”为真命题;
“”是“函数在上单调递增”的充要条件.
其中所有正确结论的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校 | 相关人员 | 抽取人数 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(1)求,;
(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有.
(1)求椭圆的方程;
(2)设直线: 上两点, 关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示将同心圆环均匀分成n()格.在内环中固定数字1~n.问能否将数字1~n填入外环格内,使得外环旋转任意格后有且仅有一个格中内外环的数字相同?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,直线经过定点,直线经过定点,且与相交于点,这两条直线与两坐标轴围成的四边形面积为.
(1)证明:,并求定点、的坐标;
(2)求三角形面积最大值,以及时的.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com