14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1ÉϵĶ¯µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃƽ·½¹Øϵ¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ
¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£¬Õ¹¿ªÀûÓû¥»¯¹«Ê½¼´¿ÉµÃ³ö£®
£¨II£©ÉèP$£¨\sqrt{3}cos¦Á£¬sin¦Á£©$£¬µãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬ÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃƽ·½¹Øϵ¿ÉµÃ£º$\frac{{x}^{2}}{3}$+y2=1£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£¬Õ¹¿ª¿ÉµÃ£º$\frac{\sqrt{2}}{2}$¦Ñ£¨cos¦È+sin¦È£©=4$\sqrt{2}$£¬
»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx+y-8=0£®
£¨II£©ÉèP$£¨\sqrt{3}cos¦Á£¬sin¦Á£©$£¬
µãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$
¡Ý$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$£¬µ±ÇÒ½öµ±$sin£¨¦Á+\frac{¦Ð}{3}£©$=1ʱȡµÈºÅ£®
¡àµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵΪ3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌµÄÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÉèÊýÁÐ{an}Ç°nÏîºÍSn£¬ÇÒSn=2an-2£®£¬Áîbn=log2an
£¨I£©ÊÔÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Éè${c_n}=\frac{b_n}{a_n}$£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®
£¨¢ó£©¶ÔÈÎÒâm¡ÊN*£¬½«ÊýÁÐ{2bn}ÖÐÂäÈëÇø¼ä£¨am£¬a2m£©ÄÚµÄÏîµÄ¸öÊý¼ÇΪdm£¬ÇóÊýÁÐ{dm}µÄÇ°mÏîºÍTm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ$cosA=\frac{3}{4}£¬C=2A$£®
£¨1£©ÇósinBµÄÖµ£»
£¨2£©Èôa=4£¬Çó¡÷ABCµÄÃæ»ýSµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÐÏÂÊö˵·¨£º
¢Ùa£¾b£¾0ÊÇa2£¾b2µÄ³äÒªÌõ¼þ£®
¢Úa£¾b£¾0ÊÇ$\frac{1}{a}£¼\frac{1}{b}$µÄ³äÒªÌõ¼þ£®
¢Ûa£¾b£¾0ÊÇa3£¾b3µÄ³äÒªÌõ¼þ£®
¢Üa£¾b£¾0ÊÇ$\sqrt{a}$£¾$\sqrt{b}$µÄ³äÒªÌõ¼þ£®
ÔòÆäÖÐÕýÈ·µÄ˵·¨ÓУ¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬ÇÒ¹«²î²»Îª0µÄµÈ²îÊýÁУ¬¶øµÈ±ÈÊýÁÐ{bn}µÄÇ°3Ïî·Ö±ðÊÇa1£¬a2£¬a6£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©Èç¹ûb1+b2+b3+¡­+bn=5£¬ÇóÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®$\int_1^2{\frac{1}{x}}dx$µÈÓÚ£¨¡¡¡¡£©
A£®ln2B£®1C£®$-\frac{1}{2}$D£®e

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³³ÌÐò¿òͼÈçͼËùʾ£¬Èô¸Ã³ÌÐòÔËÐкóÊä³öµÄÖµÊÇ10£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÃüÌ⣺¡°?x¡Ê{x|-1£¼x£¼1}£¬Ê¹µÈʽx2-x-m=0³ÉÁ¢¡±ÊÇÕæÃüÌ⣮
£¨1£©ÇóʵÊýmµÄÈ¡Öµ¼¯ºÏM£»
£¨2£©Éè²»µÈʽ£¨x-a£©£¨x-a+3£©£¼0µÄ½â¼¯ÎªN£¬Èôx¡ÊNÊÇx¡ÊMµÄ±ØÒªÌõ¼þ£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®É躯Êýf£¨x£©=4x£¬g£¨x£©=$\frac{{\sqrt{x+1}}}{x}$£¬Ôòf£¨x£©•g£¨x£©=4$\sqrt{x+1}$£¬£¨x¡Ý-1ÇÒx¡Ù0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸