精英家教网 > 高中数学 > 题目详情
10.阅读下列程序,输出的结果为22.

分析 分析程序语言,得出该程序运行后是计算并输出S的值,写出运算结果即可.

解答 解:该程序运行后是计算并输出
S=1+4+7++10=22.
故答案为:22.

点评 本题考查了程序语言的语言问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知a>b>0,则$\frac{a}{b}$与$\frac{a+1}{b+1}$的大小是$\frac{a}{b}$>$\frac{a+1}{b+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为{0,1,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,边a,b,c分别是内角A,B,C所对的边,且满足2sinB=sinA+sinC,设B的最大值为B0
(1)求B0的值;
(2)当B=B0,a=1,c=3,D为AC的中点时,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为调查了解某高等院校毕业生参加T作后,从事的T作与大学所学专业是否专业对口,该校随机调查了80位该校2015年毕业的大学生,得到具体数据如表:
专业对口专业不对口合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关”?
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K)0.500.400.250.150.100.050.0250.010
0.4550.7081.3232.0722.3063.8415.0216.635
(2)求这80位毕业生从事的工作与大学所学专业对口的频率,并估计该校近3年毕业的2000名大学生中从事的工作与大学所学专业对口的人数;
(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线$y=\frac{1}{4}{x^2}$的焦点F作一条倾斜角为30°的直线交抛物线于A、B两点,则|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\overrightarrow{a}$=(2,-3),则与向量$\overrightarrow{a}$垂直的单位向量的坐标为(  )
A.(3,2)B.($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)
C.($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)或(-$\frac{3\sqrt{13}}{13}$,-$\frac{2\sqrt{13}}{13}$)D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非负实数a,b,c满足ab+bc+ca=1,求证:$\frac{1}{a+b}$$+\frac{1}{b+c}$$+\frac{1}{c+a}$$≥\frac{5}{2}$.

查看答案和解析>>

同步练习册答案