精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,且A、B、C分别为△ABC的三边a、b、c所对的角.
(1)求角C的大小;
(2)若2sinC=sinA+sinB,且$\overrightarrow{CA}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=18,求c边的长.

分析 (1)利用数量积推出三角方程,然后求解C的大小.
(2)利用数量积转化求出ab的值,利用正弦定理以及余弦定理,转化求解即可.

解答 解:(1)∵$\overrightarrow m•\overrightarrow n=sinAcosB+cosAsinB=sin(A+B)=sinC$…(3分)
∴sinC=sin2C⇒sinC=2sinCcosC,
∴$cosC=\frac{1}{2}\;\;\;⇒\;\;\;C=60°$…(6分)
(2)$\overrightarrow{CA}•(\overrightarrow{AB}-\overrightarrow{AC})=\overrightarrow{CA}•\overrightarrow{CB}=abcosC=18\;\;⇒\;\;ab=36$…(8分)
又∵2sinC=sinA+sinB⇒2c=a+b,
∴c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC
⇒c2=4c2-3ab
⇒c2=36
⇒c=6…(12分)

点评 本题考查平面向量的数量积的应用,三角形的解法,正弦定理以及余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}中,a1=3,2an+1=a${\;}_{n}^{2}$-2an+4.
(I)证明:an+1>an
(Ⅱ)证明:an≥2+($\frac{3}{2}$)n-1
(III)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,求证:1-($\frac{2}{3}$)n≤Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若A、B是两个集合,则下列命题中真命题是(  )
A.如果A⊆B,那么A∩B=AB.如果A∩B=A,那么(∁UA)∩B=∅
C.如果A⊆B,那么A∪B=AD.如果A∪B=A,那么A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(1)在△ABC中,若b=2,B=30°,C=135°,则a=$\sqrt{6}$-$\sqrt{2}$.
(2)在△ABC中,若S△ABC=$\frac{1}{4}$ (a2+b2-c2),那么角∠C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知角β的终边在直线y=-x上.
(1)写出角β的集合S;
(2)写出S中适合不等式-360°<β<360°的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,过右焦点且垂直于x轴的直线被椭圆所截得的弦长为3.
(1)求椭圆C的方程;
(2)A,B两点分别为椭圆C的左右顶点,P为椭圆上异于A,B的一点,记直线PA,PB的斜率分别为kPA,kPB,求kPA•kPB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在直线l上;若动点M满足:|MA|=2|MO|,且M的轨迹与圆C有公共点.求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设U=R,P={x|x>1},Q={x|0<x<2},则∁U(P∪Q)=(  )
A.{x|x≤0}B.{x|x≤1}C.{x|x≥2}D.{x|x≤1或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{mx-6}{{{x^2}+n}}$的图象在点P(-1,f(-1))处的切线方程为x+2y+5=0,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案