精英家教网 > 高中数学 > 题目详情
已知△ABC的周长为6,|
BC
|,|
CA
|,|
AB
|
成等比数列,求:
(1)△ABC的面积S的最大值;
(2)
BA
BC
的取值范围.
分析:设出三向量的模分别为a,b及c,根据周长为6列出关于a+b+c=6,再由a,b及c成等边数列,根据等边数列的性质得到b2=ac,然后由余弦定理表示出cosB,把b2=ac代入,并利用基本不等式求出cosB的最小值,根据余弦函数的图象得到B的范围,同时由b=
ac
及基本不等式列出关于b的不等式,求出不等式的解集得到b的范围,根据三角形的两边之差小于第三边列出不等式,由三角形的周长及b2=ac,得到关于b的一元二次不等式,求出不等式的解集可得b的范围,
(1)由a,b及sinB,根据三角形的面积公式表示出三角形ABC的面积,把ac化为b2后,根据b的最大值及B度数的最大值,得到S的最大值即可;
(2)根据平面向量的数量积运算法则表示出
BA
BC
得到一个关系式,利用余弦定理表示出cosB后,代入表示出的关系式中,配方并根据周长及b2=ac化为关于b的关系式,再配方得到关于b的二次函数,由自变量b的范围,根据二次函数的图象与性质得到函数值的范围,即为
BA
BC
的取值范围.
解答:解:设|
BC
|,|
CA
|,|
AB
|
依次为a,b,c,则a+b+c=6,b2=ac,
由余弦定理得cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2
,故有0<B≤
π
3

b=
ac
a+c
2
=
6-b
2
,从而0<b≤2
∵△ABC三边依次为a,b,c,则a-c<b,即有(a-c)2<b2
∵a+b+c=6,b2=ac,b2>(a+c)2-4ac,
∴b2+3b-9>0,b>
-3+3
5
2

-3+3
5
2
<b≤2

(1)所以S=
1
2
acsinB=
1
2
b2sinB≤
1
2
22•sin
π
3
=
3
,即Smax=
3

(2)所以
BA
BC
=accosB=
a2+c2-b2
2
=
(a+c)2-2ac-b2
2

=
(6-b)2-3b2
2
=-(b+3)2+27

-3+3
5
2
<b≤2

2≤
BA
BC
27-9
5
2
点评:此题属于解三角形的题型,涉及的知识有等比数列的性质,余弦定理,基本不等式,一元二次不等式的解法,三角形的面积公式,平面向量的数量积运算,以及二次函数最值的求法,其中根据余弦定理,等比数列的性质及不等式的解法得出B及b的范围是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三角A,B,C所对的边分别为a,b,c.已知△ABC的周长为
2
+1
,且sinA+sinB=
2
sinC

(Ⅰ)求边c的长;
(Ⅱ)若△ABC的面积为
1
6
sinC
,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的周长为6,三边长BC,CA,AB构成等差数列,则
BA
BC
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的周长为6,且
3
cos
A+B
2
=sinC

(1)求角C;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的周长为6,|
BC
|,|
CA
|,|
AB
|
依次为a,b,c,成等比数列.
(1)求证:0<B≤
π
3

(2)求△ABC的面积S的最大值;
(3)求
BA
BC
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的周长为18,若sinA:sinB:sinC=2:3:4,则此三角形中最大边的长为
8
8

查看答案和解析>>

同步练习册答案