精英家教网 > 高中数学 > 题目详情

设函数,其中常数a>1
(1)讨论f(x)的单调性;
(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.w.

解: (I)  
知,当时,,故在区间是增函数;
时,,故在区间是减函数;
时,,故在区间是增函数。
综上,当时,在区间是增函数,在区间是减函数。
(II)由(I)知,当时,处取得最小值。



由假设知 
            即  
解得  1<a<6
的取值范围是(1,6)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数,其中常数a>1,f(x)=
13
x3-(1+a)x2+4ax+24a
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省高三第一次模拟考试文科数学试卷(解析版) 题型:解答题

设函数 ,其中常数a>1

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:四川省2010-2011学年高三一诊模拟(文科) 题型:解答题

(满分12分)设函数,其中常数a>1.

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若当x≥0时, f(x)>0恒成立,求a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省上学期高二期中考试理科数学试卷 题型:解答题

设函数,其中常数a>1

(1)讨论f(x)的单调性;

(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.w.

 

查看答案和解析>>

同步练习册答案