精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
(Ⅰ)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*
又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列.
(Ⅱ)由(Ⅰ)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n.
所以数列{an}的前n项和Sn=
4n-1
3
+
n(n+1)
2

(Ⅲ)证明:对任意的n∈N*Sn+1-4Sn=
4n+1-1
3
+
(n+1)(n+2)
2
-4(
4n-1
3
+
n(n+1)
2
)
=-
1
2
(3n2+n-4)≤0

所以不等式Sn+1≤4Sn,对任意n∈N*皆成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在等比数列{an}中,已知a2=2,a3=4.
(1)求数列{an}的通项an
(2)设bn=an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α为锐角,且tanα=
2
-1,函数f(x)=2xtan2a+sin(2a+
π
4
),数列{an}的首项a1=1,an+1=f(an).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足:a10=1,S20=0.
(1)求数列{|an|}的前20项的和;
(2)若数列{bn}满足:log2bn=an+10,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的前n项和是Sn=2n2-25n,试求数列{|an|}的前10项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn=2an-2n
(Ⅰ)求a1,a2
(Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列
(Ⅲ)求数列{
n+1
2cn
}
的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列的前项和,则            .

查看答案和解析>>

同步练习册答案