(12分)如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。
(1)求证:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。
略
【解析】(1)∵AB=B1B
∴四边形ABB1A1为正方形,
∴A1B⊥AB1
又∵AC1⊥面A1BD,
∴AC1⊥A1B,
∴A1B⊥面AB1C1,
∴A1B⊥B1C1
又在直棱柱ABC-A1B1C1中,BB1⊥B1C1,
∴B1C1⊥平面ABB1A1…………………………………………6分
(2)证明:设AB=BB1=a,CE=x,
∵D为AC的中点,且AC1⊥A1D,
∴A1B=A1C1=a
又∵B1C1⊥平面ABB1A1,B1C1⊥A1B1
∴B1C1=a,BE=,
A1E=,
在△A1BE中,由余弦定理得
BE2=A1B2+A1E2-2A1B·A1E·cos45°,
即a2+x2=2a2+3a2+x2-2ax-2·a·,
∴=2a-x,解得x=a,即E是C1C的中点
∵ D.E分别为A C.C1C的中点,∴DE∥AC1
∵AC1⊥平面A1BD,∴DE⊥平面A1BD
又∵PE平面BDE,∴平面ABD⊥平面BDE…………………………12分
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com