精英家教网 > 高中数学 > 题目详情

【题目】(文科)已知四棱锥的底面ABCD为直角梯形,为正三角形.

(1)点M为棱AB上一点,若平面SDM,求实数λ的值;

(2)若,求四棱锥的体积.

【答案】1;(2.

【解析】

1)由线面平行的性质定理得,从而知中点,可求;

(2)由已知证得所以平面SCD,即得平面平面ABCD.,因此在平面SCD内过点SSE垂直CDCD的延长线于点E,就有平面ABCD,这就是棱锥的高.由,得,再由,得,从而有,于是棱锥体积可求.

(1)若平面SDM平面ABCD,平面平面

所以

因为,所以四边形BCDM为平行四边形.

又因为

所以MAB的中点.

因为

所以.

(2)因为,所以

所以平面SCD

平面ABCD

所以平面平面ABCD.

在平面SCD内过点SSE垂直CDCD的延长线于点E

又平面平面

所以平面ABCD

连接AE,在中,

因为,所以

由题易知

所以

所以

底面ABCD为直角梯形,

四棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

非体育迷

体育迷

合计

10

55

合计

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?

(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.

附:

PK2k

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加10次模拟考试,下面是高三第一学期某学生参加5次模拟考试的数学成绩表:

模拟考试第x

1

2

3

4

5

考试成绩y

90

100

105

105

100

1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程,若高考看作第11次模拟考试,试估计该考生的高考数学成绩;

(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值的个数为,求出的分布列与数学期望.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,为正三角形,且.

(1)证明:直线平面

(2)若四棱锥的体积为是线段的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的周期为,图象的一个对称中心为.将函数图象上所有点的横坐标伸长到原来的(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数的图象.

1)求函数的解析式;

2)(理)求证:存在,使得能按照某种顺序成等差数列.

3)(文)定义:当函数取得最值时,函数图像上对应的点称为函数的最值点,如果函数的图像上至少有一个最大值点和一个最小值点在圆的内部或圆周上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点上,以为切点的的切线的斜率为,过外一点(不在轴上)作的切线,点为切点,作平行于的切线(切点为),点分别是与的交点(如图):

1)用的纵坐标表示直线的斜率;

2)若直线的交点为,证明的中点;

3)设三角形面积为,若将由过外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做切线三角形,如,再由切线三角形,并依这样的方法不断作切线三角形……,试利用切线三角形的面积和计算由抛物线及所围成的阴影部分的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 分别是的中点.

(1)求证:四边形是菱形;

(2)求异面直线所成角的大小 (结果用反三角函数值表示) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191018-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得1336442铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为;②在犯错误的概率不超过1%的前提下可以认为是否对主办方表示满意与运动员的性别有关;③没有99.9%的把握认为是否对主办方表示满意与运动员的性别有关;则正确命题的个数为( )附:

男性运动员

女性运动员

对主办方表示满意

200

220

对主办方表示不满意

50

30

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式对于任意成立,求正实数的取值范围.

查看答案和解析>>

同步练习册答案