精英家教网 > 高中数学 > 题目详情
9.若关于x的方程sinx+$\sqrt{3}$cosx+a=0在[0,2π]上有三个实根,则a的值为-$\sqrt{3}$.

分析 化简sinx+$\sqrt{3}$cosx+a=0可得a=-2sin(x+$\frac{π}{3}$),作函数y=-2sin(x+$\frac{π}{3}$)在[0,2π]上的图象,从而解得.

解答 解:∵sinx+$\sqrt{3}$cosx+a=0,
∴a=-2sin(x+$\frac{π}{3}$),
作函数y=-2sin(x+$\frac{π}{3}$)在[0,2π]上的图象如下,

结合图象可知,
a=-2sin$\frac{π}{3}$=-$\sqrt{3}$,
故答案为:-$\sqrt{3}$.

点评 本题考查了三角恒等变换及三角函数的图象的应用,同时考查了方程的解与函数的图象的关系应用应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.甲、乙两名骑手骑术相当,他们各自挑选3匹马备用,甲挑选的三匹马分别记为A,B,C.乙挑选的三匹马分别记为A′,B′,C′,已知6匹马按奔跑速度从快到慢的排列顺序依次为:A,A′,B,B′,C′,C.比赛前甲、乙均不知道这个顺序.规定:每人只能骑自己挑选的马进行比赛,且率先到达终点者获胜.
(Ⅰ)若甲、乙两人进行一次比赛,求乙获胜的概率;
(Ⅱ)若甲、乙二人进行三次比赛,且不能重复使用马匹,求乙获胜次数大于甲的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为4$\sqrt{3}$,椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程;
(2)设P为椭圆C的下顶点,椭圆C与直线y=kx+m相交于不同的两点M,N,当|PM|=|PN|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=|2x-1|+|ax-1|(a>0)
(1)当a=2时,解不等式4f(x)≥f(0)
(2)若对任意x∈R,不等式4f(x)≥f(0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x),当x≤0时,f(x)=$\left\{\begin{array}{l}{(x+2)^{2},x∈(-∞,-1)}\\{(\frac{1}{2})^{x}-1,x∈[-1,0]}\end{array}\right.$,则f(f(3))=(  )
A.-9B.-1C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为调查当前干部的作风情况,某市检察机关从该市干部名单库中随机抽取100名干部,通过问卷调查,实际考核等方式,对每个干部依次考核成绩,分A,B,C,D,E五个等级进行测评,最后对数据做如下统计:
成绩[50,60)[60,70)[70,80)[80,90)[90,100)合计 
 等级 E D C B A 
 频数 2 24 36 30 8 100
 频率 0.02 0.24 0.36 0.3 0.081
(1)根据上级要求,对考核测评为E级的干部,将从干部名单库中清除;对考核测评为D级的干部,要求进行教育整改;而对考核测评为A级的干部,将授予“人民楷模”的称号,现从该市干部中,随机抽取3人,求这三人来自不同的考核测评等级,且都不是被清除人的概率(精确到小数点后三位);
(2)若从该市干部中,随机抽取5人,求抽取的是“人民楷模”的人数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tan(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tan(α-$\frac{π}{4}$)=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x-2}$-$\frac{1}{x+2}$的最小值是-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列各函数的值域
(1)y=$\frac{1-x}{2x+5}$
(2)y=$\frac{{x}^{2}+x+1}{{x}^{2}+x+2}$.

查看答案和解析>>

同步练习册答案