精英家教网 > 高中数学 > 题目详情

【题目】若各项均不为零的数列的前项和为,数列的前项和为,且.

1)证明数列是等比数列,并求的通项公式;

2)设,是否存在正整数,使得对于恒成立.若存在,求出正整数的最小值;若不存在,请说明理由.

【答案】(1)证明详见解析,;(2)存在,最小值为1.

【解析】

(1) ,①,得,②,然后②-①得,③

时,,④, ③-④得,验证时也成立,从而可证数列是等比数列,由定义可求得通项公式,

(2)求出后,利用裂项求和可求得,再根据恒成立可求得的最小值.

,①,,②

由数列的前项和为,数列的前项和为及②-①得

,

,

,③

从而当时,,④

-④得,即,所以

.

,得.

时,由

,此时.

数列是以为首项,以为公比的等比数列,且.

2,

,

.

假设存在正整数,使得对于恒成立,

,所以的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在中国绿化基金会的支持下,库布齐沙漠得到有效治理.2017年底沙漠的绿化率已达,从2018年开始,每年将出现这样的情况,上一年底沙漠面积的被栽上树改造为绿洲,而同时,上一年底绿洲面积的又被侵蚀,变为沙漠.

1)设库布齐沙漠面积为1,由绿洲面积和沙漠面积构成.2017年底绿洲面积为,经过1年绿洲面积为,经过n年绿洲面积为,试用表示

2)问至少需要经过多少年的努力才能使库布齐沙漠的绿洲面积超过(年数取整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大城市往往人口密集,城市绿化在健康人民群众肺方面发挥着非常重要的作用,历史留给我们城市里的大山拥有品种繁多的绿色植物更是无价之宝.改革开放以来,有的地方领导片面追求政绩,对森林资源野蛮开发受到严肃查处事件时有发生.2019年的春节后,广西某市林业管理部门在“绿水青山就是金山银山”理论的不断指引下,积极从外地引进甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:

(1)据茎叶图求甲、乙两种树苗的平均高度;

(2)据茎叶图,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面内两个不共线的非零向量,,且三点共线.

1求实数的值;

2)已知,,若四点按逆时针顺序构成平行四边形,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,且满足b2=accosB=

1)求+的值;

2)设=,求三边abc的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,且平面,点是线段上任意一点.

(1)证明:平面平面

(2)若的最大值是,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高万元,已知建筑第5层楼房时,每平方米建筑费用为万元.

若学生宿舍建筑为x层楼时,该楼房综合费用为y万元,综合费用是建筑费用与购地费用之和,写出的表达式;

为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

查看答案和解析>>

同步练习册答案