精英家教网 > 高中数学 > 题目详情

函数= -12+16在 [-3,3]上的最大值、最小值分别是(       )

A  6,0     B   32, 0      C   2 5, 6       D   32,  16

B


解析:

=3-12, 由=0得=±2当=±2,=±3时求得最大值32,最小值0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f1(x)=
mx
4x2+16
f2(x)=(
1
2
)|x-m|
其中m∈R且m≠o.
(1)判断函数f1(x)的单调性;
(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)设函数g(x)=
f1(x),x≥2
f2(x),x<2
当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=
mx
4x2+16
f2(x)=(
1
2
)|x-m|
,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1(x)+f2(x)(x∈[2,+∞))的单调性,并证明你的结论;
(2)设函数g(x)=
f1(x) x≥2 
f2(x) x<2.
若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g(x1)=g(x2)成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=
mx
4x2+16
f2(x)=(
1
2
)|x-m|
其中m∈R且m≠o.
(1)判断函数f1(x)的单调性;
(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1,+∞)上的函数f(x)=
8-16|x-
3
2
|,(1≤x≤2)
1
2
f(
x
2
),(x>2)
,有下面五个命题:
①函数f(x)是周期函数;
②函数f(x)的值域为[0,8];
③关于x的方程f(x)=(
1
2
)n-1
(n∈N*)有2n+5个不同的实根;
④当x∈[2n-1,2n](n∈N*)时,f (x)的图象与x轴围成图形的面积为4;
⑤存在实数x0,使x0f(x0)>12成立.
其中正确命题是
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax-1(a>0)有两个零点,其中一个零点在区间(1,2)内,则a的取值范围是
(
1
6
1
2
)
(
1
6
1
2
)

查看答案和解析>>

同步练习册答案