精英家教网 > 高中数学 > 题目详情

已知数列为等差数列,数列为等比数列,若,且.
(1)求数列的通项公式;
(2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.

(1);(2)不存在假设的.

解析试题分析:本题考查等差数列与等比数列的概念、通项公式等基础知识,考查思维能力、分析问题与解决问题的能力.第一问,用代替,得到新的表达式,2个表达式相减,得到,设的通项公式,代入中,得到表达式,又由于为等比数列,所以化简成关于的方程,这个方程恒成立,所以,由于,所以,所以可以得到的通项公式;第二问,用反证法,找到矛盾.
试题解析:(1)当时,
,相减得:


(常数),
对任意恒成立,
.又,∴.
(2)假设存在满足条件,则
由于等式左边为奇数,故右边也为奇数,∴
,但左边为偶数,右边为奇数,矛盾!
所以不存在假设的.
考点:1.等差、等比数列的通项公式;2.反证法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且.
(1)求数列的通项公式;
(2)设求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,前项和为
(I)求
(Ⅱ)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项和为Sn,公差d≠0,且成等比数列.
(1)求数列{an}的通项公式;
(2)设是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差.且分别是等比数列.
(1)求数列的通项公式;
(2)设数列对任意自然数均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的各项均为正实数,,若数列满足,其中为正常数,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得当时,恒成立?若存在,求出使结论成立的的取值范围和相应的的最小值;若不存在,请说明理由;
(3)若,设数列对任意的,都有成立,问数列是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,公差,且成等比数列.
(1)求数列的通项公式;
(2)设是首项为1公比为3 的等比数列,求数列项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:
(Ⅰ) 求证:数列是等差数列并求的通项公式;
(Ⅱ) 设,求证:.

查看答案和解析>>

同步练习册答案