精英家教网 > 高中数学 > 题目详情
1.函数$f(x)=lg({2sinx-1})+\sqrt{-{x^2}+3x}$的定义域为($\frac{π}{6}$,$\frac{5π}{6}$).

分析 根据函数的解析式,列出不等式组$\left\{\begin{array}{l}{2sinx-1>0}\\{{-x}^{2}+3x≥0}\end{array}\right.$,求出解集即可.

解答 解:∵函数$f(x)=lg({2sinx-1})+\sqrt{-{x^2}+3x}$,
∴$\left\{\begin{array}{l}{2sinx-1>0}\\{{-x}^{2}+3x≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{sinx>\frac{1}{2}}\\{x(x-3)≤0}\end{array}\right.$;
解得$\left\{\begin{array}{l}{\frac{π}{6}+2kπ<x<\frac{5π}{6}+2kπ,k∈Z}\\{0≤x≤3}\end{array}\right.$,
∴$\frac{π}{6}$<x<$\frac{5π}{6}$;
∴f(x)的定义域为$({\frac{π}{6},\frac{5π}{6}})$.
故答案为:($\frac{π}{6}$,$\frac{5π}{6}$).

点评 本题考查了求函数定义域的应用问题,也考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面是边长为2$\sqrt{3}$的菱形,∠BAD=120°且PA⊥面ABCD,PA=2$\sqrt{6}$,M,N分别为PB,PD的中点.
(1)证明:MN∥面ABCD
(2)设Q为PC的中点,求三棱锥M-ANQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[-4,0]的图象,图象的最高点为B(-1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧$\widehat{DE}$.
(1)求曲线段FGBC的函数表达式;
(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;
(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧$\widehat{DE}$上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.己知圆O:x2+y2=1和圆C:x2+y2-2x-4y+m=0相交于A、B两点,若|AB|=$\frac{{4\sqrt{5}}}{5}$,则m的值是1或-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若a,b,c为直角三角形的三边,其中c为斜边,则a2+b2=c2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,∠AOB=∠BOC=∠COA=90°,S为顶点O所对面的面积,S1,S2,S3分别为侧面△OAB,△OAC,△OBC的面积,则S,S1,S2,S3满足的关系式为${S}^{2}={S}_{1}^{2}+{S}_{2}^{2}+{S}_{3}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(其中n∈N
(I)求a0及Sn=a1+a2+a3+…+an
(Ⅱ)比较Sn与(n-2)2n+5的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点(2,1)且与原点距离最大的直线的方程是(  )
A.x+2y-5=0B.y=$\frac{1}{2}$x+1C.2x+y-5=0D.3x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,用边长为60cm的正三角形铁皮做一个无盖的三棱柱形容器,先在三个角分别截去一个小四边形(图中阴影部分),然后把三边翻转90°角,再焊接而成.问该容器的高为多少时,容器的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图的程序框图,若输出的结果是8,则判断框内m的取值范围是(  )
A.(42,56)B.(42,56]C.(56,72]D.(56,72)

查看答案和解析>>

同步练习册答案