精英家教网 > 高中数学 > 题目详情

【题目】某水利工程队相应政府号召,计划在韩江边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为32400m2的矩形鱼塘,其四周都留有宽3m的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最少.

【答案】解:设鱼塘的长为xm,宽为ym,农田面积为s,
则农田长为(x+6)m,宽为(y+6)m,xy=32400,
s=(x+6)(y+6)=xy+6(x+y)+36,

当且仅当x=y=180时取等号,所以当x=y=180,s=34596m2
答:当选的农田的长和宽都为186m时,才能使占有农田的面积最少.
【解析】设鱼塘的长为xm,宽为ym,农田面积为s,则农田长为(x+6)m,宽为(y+6)m,xy=32400,s=(x+6)(y+6)=xy+6(x+y)+36,再由基本不等式即可得到所求最小值,及对应的x,y的值.
【考点精析】本题主要考查了基本不等式在最值问题中的应用的相关知识点,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当t∈[﹣2,0]时,求函数g(t)的解析式;
(3)设函数h(x)=2|xk|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式 有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C的坐标分别为(﹣ ,0),( ,0),(m,n),G,O′,H分别为△ABC的重心,外心,垂心.

(1)写出重心G的坐标;
(2)求外心O′,垂心H的坐标;
(3)求证:G,H,O′三点共线,且满足|GH|=2|OG′|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,点M是SD的中点,AN⊥SC,且交SC于点N.

(1)求证:SC⊥平面AMN;
(2)求二面角D﹣AC﹣M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣2,0),B(2,0),P(x0 , y0)是直线y=x+3上任意一点,以A,B为焦点的椭圆过P,记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】与圆(x+1)2+y2=1和圆(x﹣5)2+y2=9都相切的圆的圆心轨迹是(
A.椭圆和双曲线
B.两条双曲线
C.双曲线的两支
D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示几何体的三视图,则该几何体的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把形如 的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得 ,两边对x求导数,得 ,于是 ,运用此方法可以求得函数 在(1,1)处的切线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则关于f(x)的说法正确的是(
A.对称轴方程是x= +2kπ(k∈Z)
B.φ=﹣
C.最小正周期为π
D.在区间( )上单调递减

查看答案和解析>>

同步练习册答案