精英家教网 > 高中数学 > 题目详情
17.等差数列{an}中,若a1+a3+a5+a7=4,则a4=(  )
A.1B.3C.4D.5

分析 根据等差数列的性质进行转化求解即可.

解答 解:在等差数列中,a1+a7=a3+a5=2a4
∴a1+a3+a5+a7=4a4=4,
∴a4=1,
故选:A

点评 本题主要考查等差数列性质的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
日    期4月10日4月11日4月12日4月13日4月14日
温  差x(℃)1012131411
发芽数y(颗)1113141612
(1)求这5天的发芽数的方差;
(2)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程$\widehat{y}$=bx+$\widehat{a}$.
(3)若4月15日的温差为15℃,试用(2)中的回归方程估测当天50颗稻籽浸泡后的发芽数.(精确到整数部分)
(参考公式:回归直线方程式=bx+$\widehat{a}$.其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\overline{a}=\overline{y}-b\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.程序框图如图所示,若输入a的值是虚数单位i,则输出的结果是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=3|x|在区间[a,b]上的值域为[1,9],则a2+b2-2a的取值范围是(  )
A.{4,12}B.{8,12}C.[4,12]D.[8,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.程序框图(即算法流程图)如图所示,其输出结果是(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(k,3),$\overrightarrow{b}=(1,4)$,$\overrightarrow{c}$=(1,-3),且(2$\overrightarrow{a}-3\overrightarrow{b}$)$⊥(\overrightarrow{b}+\overrightarrow{c})$,则实数k=(  )
A.-$\frac{9}{2}$B.0C.3D.$\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在复平面内,复数$\frac{1+3i}{2-i}$所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+x2-ax(a∈R).
(1)当a=0时,求函数y=f(1-2x),x∈[0,$\frac{1}{2}$)的最大值;
(2)求函数f(x)的单调区间;
(3)设函数f(x)存在两个极值点,x1,x2,且x1<x2,若0<x1<$\frac{1}{2}$,求证:f(x1)-f(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知倾斜角为60°的直线l过点(0,-2$\sqrt{3}$)和椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,且椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆C的方程;  
(Ⅱ)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且$\overrightarrow{DM}$=λ$\overrightarrow{DN}$,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案