精英家教网 > 高中数学 > 题目详情
已知点H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

①当点P在y轴上移动时,求点M的轨迹C;
②过点R(2,1)作直线l与轨迹C交于A,B两点,使得R恰好为弦AB的中点,求直线l的方程.
分析:①设点M(x,y),由
PM
=-
3
2
MQ
,得P(0,-
y
2
)
Q(
x
3
,0)
,由
HP
PM
=0
,得(3,-
y
2
)•(x,
3y
2
)=0
,所以y2=4x.由此能求出点M的轨迹C.
②方法一:
设直线l:y=k(x-2)+1,其中k≠0,代入y2=4x,整理得k2x2-(4k2-2k+4)x+(2k-1)2=0.设A(x1,y1),B(x2,y2),则x1+x2=
4k2-2k+4
k2
,由
4k2-2k+4
k2
=4
,解得:k=2.由此能求出直线l的方程为.
方法二:
设A(x1,y1),B(x2,y2),则
y
2
1
=4x1
y
2
2
=4x2
,两式相减 得:
y1-y2
x1-x2
=
4
y1+y2
.因为R(2,1)为弦AB的中点,所以y1+y2=2,由此能求出直线l的方程.
解答:解:①设点M(x,y),由
PM
=-
3
2
MQ
,得P(0,-
y
2
)
Q(
x
3
,0)

HP
PM
=0
,得(3,-
y
2
)•(x,
3y
2
)=0
,所以y2=4x.
又点Q在x轴的正半轴上,得x>0.
所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.
②方法一:设直线l:y=k(x-2)+1,其中k≠0,代入y2=4x,
整理得k2x2-(4k2-2k+4)x+(2k-1)2=0,
设A(x1,y1),B(x2,y2),
x1+x2=
4k2-2k+4
k2

4k2-2k+4
k2
=4
,解得:k=2.
所以,直线l的方程为y=2(x-2)+1,
即:y=2x-3.
方法二:设A(x1,y1),B(x2,y2),
y
2
1
=4x1
y
2
2
=4x2

两式相减 得:
y
2
1
-
y
2
2
=4(x1-x2)

整理得:
y1-y2
x1-x2
=
4
y1+y2

因为R(2,1)为弦AB的中点,
所以y1+y2=2,
代入上式得
y1-y2
x1-x2
=2
,即kAB=2.
所以,直线l的方程为y=2(x-2)+1,
即:y=2x-3
点评:本题考查直线与圆锥曲线的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过点(1,0)作直线L交轨迹C于A、B两点,已知
AF
=2
FB
,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点D(m,0)(m>0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,试问∠AED=∠BED吗?若相等,请给出证明,若不相等,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•和平区三模)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且
HP
PM
=0
,又
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C的方程;
(2)若直线l:y=k(x-1)(k>2)与轨迹C交于A、B两点,AB中点N到直线3x+4y+m=0(m>-3)的距离为
1
5
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)(在下列两题中,任选一题,写出计算过程,并求出结果,若同时选做两题,
则只批阅第②小题,第①题的解答,不管正确与否,一律视为无效,不予批阅):
①将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并
将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解;
②(解答本题,最多得9分)将(1)中的曲线C推广为椭圆:
x2
a2
+
y2
b2
=1
,并
将(2)中的定点取为原点,求与(2)相类似的问题的解.

查看答案和解析>>

同步练习册答案