精英家教网 > 高中数学 > 题目详情
某企业常年生产一种出口产品,根据预测可知,进入2l世纪以来,该产品的产量平稳增长.记2006年为第1年,且前4年中,第x年与年产量f(x)(万件)之间的关系如下表所示:
x 1 2 3 4
f(x) 4.00 5.58 7.00 8.44
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=log
1
2
x+a

(1)找出你认为最适合的函数模型,并说明理由,然后求出相应的解析式(所求a或b值保留1位小数);
(2)因遭受某国对该产品进行反倾销的影响,2012年的年产量比预计减少30%,试根据所建立的函数模型,确定2012年的年产量.
分析:(1)把给出的三个模型分别验证,即可找出一个比较适合的模型;
(2)利用(1)的模型,先计算出预计的2012的产量,再去掉减少30%即可得出.
解答:解:(1)复合条件的是f(x)=ax+b.
①若模型为f(x)=2x+a,由f(1)=2+a=4,解得a=4,即f(x)=2x+2,此时f(2)=6,f(3)=10,f(4)=18,
与已知条件相差太大,不符合,不能选取.
②若模型为f(x)=log
1
2
x+a
,则f(x)是减函数,不符合,不能选取.
③由①②可知:前两个模型都不能选取,只能选取模型f(x)=ax+b.
把(1,4),(3,7)代入得
4=a+b
7=3a+b
,解得
a=
3
2
b=
5
2

f(x)=
3
2
x+
5
2
,(x=1,2,…,6,7)经验证x=2,4,符合的比较好.
(2)∵f(7)=
3
2
×7+
5
2
=13
,∴13×(1-30%)=9.1,
即确定2012年的年产量约为9.1万件.
点评:熟练掌握建立模型的方法、不同函数模型的单调性等性质及正确计算是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f(x)(万件)如表所示:
x 1 2 3 4
f(x) 4.00 5.58 7.00 8.44
(1)建系,画出2000~2003年该企业年产量的散点图;
(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.
(3)2013年(即x=14)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2013年的年产量应该约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业常年生产一种出口产品,根据预测可知,进入2l世纪以来,该产品的产量平稳增长.记2006年为第1年,且前4年中,第x年与年产量f(x)(万件)之间的关系如下表所示:
x1234
f(x)4.005.587.008.44
若f(x)近似符合以下三种函数模型之一:数学公式
(1)找出你认为最适合的函数模型,并说明理由,然后求出相应的解析式(所求a或b值保留1位小数);
(2)因遭受某国对该产品进行反倾销的影响,2012年的年产量比预计减少30%,试根据所建立的函数模型,确定2012年的年产量.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某企业常年生产一种出口产品,根据预测可知,进入2l世纪以来,该产品的产量平稳增长.记2006年为第1年,且前4年中,第x年与年产量f(x)(万件)之间的关系如下表所示:
x 1 2 3 4
f(x) 4.00 5.58 7.00 8.44
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=log
1
2
x+a

(1)找出你认为最适合的函数模型,并说明理由,然后求出相应的解析式(所求a或b值保留1位小数);
(2)因遭受某国对该产品进行反倾销的影响,2012年的年产量比预计减少30%,试根据所建立的函数模型,确定2012年的年产量.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田二中高一(上)期中数学试卷(解析版) 题型:解答题

某企业常年生产一种出口产品,根据预测可知,进入2l世纪以来,该产品的产量平稳增长.记2006年为第1年,且前4年中,第x年与年产量f(x)(万件)之间的关系如下表所示:
x1234
f(x)4.005.587.008.44
若f(x)近似符合以下三种函数模型之一:
(1)找出你认为最适合的函数模型,并说明理由,然后求出相应的解析式(所求a或b值保留1位小数);
(2)因遭受某国对该产品进行反倾销的影响,2012年的年产量比预计减少30%,试根据所建立的函数模型,确定2012年的年产量.

查看答案和解析>>

同步练习册答案