精英家教网 > 高中数学 > 题目详情
空间四边形ABCD中,若E、F、G、H分别为AB、BC、CD、DA边上的中点,则下列各式中成立的是(  )
A、
EB
+
BF
+
EH
+
GH
=0
B、
EB
+
FC
+
EH
-
EG
=0
C、
EF
+
FG
+
EH
+
GH
=0
D、
EF
-
FB
+
CG
+
GH
=0
考点:向量加减混合运算及其几何意义
专题:平面向量及应用
分析:根据题意,画出图形,结合图形,利用向量的加法与减法的几何意义,对每一个选项进行判断即可.
解答: 解:画出图形,如图所示,
∵E、F、G、H分别为AB、BC、CD、DA边上的中点,
FC
=
BF
GH
=
FE

EB
+
FC
+
EH
-
EG
=
EB
+
BF
+(
EH
-
EG

=
EF
+
GH

=
EF
-
EF

=
0

故答案为:B.
点评:本题考查了平面向量的加法与减法的几何意义的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,cos2A=2cos2A-2cosA.
(1)求角A的大小;
(2)若a=3,sinB=2sinC,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两高速公路线垂直相交于站A,若已知AB=100千米,甲汽车从A站出发,沿AC方向以50千米/小时的速度行驶,同时乙汽车从B站出发,一年BA方向以v千米/小时的速度行驶,至A站即停止前行(甲车仍继续行驶)(两车的车长忽略不计).
(1)甲、乙两车的最近距离为
 
(用含v的式子表示);
(2)若甲、乙两车从开始行驶到甲、乙两车相距最近时所用时间为t0小时,则当v为
 
时t0最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A地侦查发现,在在南偏东60°方向的B地,有一艘某国军舰正以每小时13海里的速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国渔民,此时,C地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C地救援我国渔民,能不能及时赶到?(
2
≈1.41,
3
≈1.73,
6
=2.45).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=2f(
1
x
),当x∈[1,3]时,f(x)=lnx在区间[
1
3
,3]上,函数g(x)=f(x)-ax(a>0)恰有一个零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某幼儿园有教师30人,对他们进行年龄状况和受教育程度的调查,其结果如下:
本科研究生合计
35岁以下527
35~50岁(含35岁和50岁)17320
50岁以上213
(Ⅰ)从该幼儿园教师中随机抽取一人,求具有研究生学历的概率;
(Ⅱ)从幼儿园所有具有研究生学历的教师中随机抽取2人,求有35岁以下的研究生或50岁以上的研究生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某农工贸集团开发的养殖业和养殖加工业的年利润分别为P和Q(万元),这两项生产与投入的资金a(万元)的关系是P=
a
3
,Q=
10
a
3
,该集团今年计划对这两项生产投入资金共60万元,为获得最大利润,对养殖业与养殖加工业生产每项各投入多少万元?最大利润可获多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(-1,x)与
b
=(x,-4)平行且方向相同,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.
组号分组回答正确的人数回答正确的人数占本组的比例
第1组[18,28)50.5
第2组[28,38)18a
第3组[38,48)270.9
第4组[48,58)x0.36
第5组[58,68)30.2
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

同步练习册答案