精英家教网 > 高中数学 > 题目详情

函数f(x)=,则f(x)的最大值、最小值分别为

[  ]
A.

10、6

B.

10、8

C.

8、6

D.

以上都不对

答案:A
解析:

当x∈[1,2]时,f(x)max=f(2)=10,f(x)min=8;当x∈[-1,1]时,f(x)max=f(1)=8,f(x)min=f(-1)=6,故选A.


练习册系列答案
相关习题

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:022

对任意的函数f(x),g(x),在公共定义域内,规定f(x)*g(x)=min{f(x),g(x)},若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为________.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修四1.4三角函数的图像与性质练习卷(三)(解析版) 题型:填空题

.(2010·深圳市调研)已知函数f(x)=,则f[f(2010)]=________.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三第二学期第一次统考理科数学 题型:填空题

若函数f (x),则f (x)的定义域是       

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高三调研测试理科数学试卷 题型:填空题

若函数f (x)=,则f (x)的定义域是       

 

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

同步练习册答案