【题目】如图, 为圆柱的母线, 是底面圆的直径, 分别是的中点,
(1)证明: ∥平面;
(2)求圆柱的体积和表面积.
【答案】(1)见解析;(2), .
【解析】试题分析:(1)取 的中点为 ,先证明平面 与平面 平行,即可得结论;(2)由根据勾股定理求出底面圆的直径,进而求得半径,在根据勾股定理可得圆柱的高,从而由圆柱的体积及侧面积公式可得结果.
试题解析:(1)略
(2)底面半径, ,…10分 ,
【方法点晴】本题主要考查线面平行的判定、面面平行的性质法、圆柱的体积及表面积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法②证明的.
科目:高中数学 来源: 题型:
【题目】如图,已知等边的边长为4,,分别为边的中点,为的中点,为边上一点,且,将沿折到的位置,使平面平面.
(1)求证:平面平面;
(2)设,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有外形、质量完全相同的红球、黑球、黄球、绿球共12个.从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是.
(1)试分别求得到黑球、黄球、绿球的概率;
(2)从中任取一球,求得到的不是“红球或绿球”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解游客对2015年“十一”小长假的旅游情况是否满意,某旅行社从年龄在内的游客中随机抽取了1000人,并且作出了各个年龄段的频率直方图(如图所示),同时对这1000人的旅游结果满意情况进行统计得到下表:
(1)求统计表中和的值;
(2)从年龄在内且对旅游结果满意的游客中,采用分层抽样的方法抽取10人,再从抽取的10人
中随机抽取4人做进一步调查,记4人中年龄在内的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;
②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l⊥α;
③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;
④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的是 .(把你认为正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(月) | |||||
(千克) |
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程.
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】英州市育才中学对全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查得到统计数据如下(表)
教师教龄 | 年以下 | 年至年 | 年至年 | 年及以上 |
教师人数 | ||||
经常使用信息技术实施教学的人数 |
(1)求该校教师在教学中不经常使用信息技术实施教学的概率;
(2)在教龄年以下,且经常使用信息技术教学的教师中任选人,其中恰有一人教龄在年以下的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
(1)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说出理由);
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与的关系为,根据(2)的结果求:年宣传费为何值时,年利润最大?
附:对于一组数据, ,…,其回归直线的斜率和截距的最小二乘估计分别为, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com