精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数y=f(x)的最大、最小值以及相应的x值;
(2)若x∈[0,2π],求函数y=f(x)的单调增区间;
(3)若y>2,求x的取值范围.

解:(1)当2x-,k∈Z时,函数y=f(x)取得最大值为3,
当2x-,k∈Z时,函数y=f(x)取得最小值为-1;
(2)令T=2x-,k∈Z.
也即kπ-(k∈Z)时,函数y=2sinT+1单调递增.又x∈[0,2π],
∴函数y=f(x)的单调增区间
(3)若y>2,∴,k∈Z.
解得:,k∈Z.
分析:(1)直接利用正弦函数的最值,求函数y=f(x)的最大、最小值以及相应的x值;
(2)利用正弦函数的单调增区间,求出函数的函数y=f(x)的单调增区间,然后求出在x∈[0,2π]的范围即可.
(3)利用y>2,推出函数的表达式,通过解方程直接求x的取值范围.
点评:本题是中档题,考查三角函数的基本性质的应用,能够通过基本函数的基本性质,灵活解答是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案