精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,平面,且为等边三角形,与平面所成角的正弦值为

1)若是线段的中点,证明:平面

2)求二面角的平面角的余弦值.

【答案】)见解析;(

【解析】试题分析:(1)取的中点为,连接,可证平面,通过证明四边形为平行四边形可得结论;(2)取的中点,连结的中点为,以为原点,轴,轴,轴建立空间直角坐标系,由与平面所成角的正弦值为求得,求出平面和平面的一个法向量,根据向量的夹角公式即可求得二面角的余弦值.

试题解析:(1)证明:取的中点为,连接,则可证平面,四边形为平行四边形,所以,所以平面

2)解:取的中点,连结,则平面即是与平面所成角,,设,则有,得,取的中点为,以为原点,轴,轴,轴,建立如图空间直角坐标系,则,由(1)知:平面,又,取平面的一个法向量,又,设平面的一个法向量,由,由此得平面的一个法向量,面积,所以二面角的平面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在四棱锥中,底面是正方形,

(1)如图2,设点的中点,点的中点,求证: 平面

(2)已知网格纸上小正方形的边长为,请你在网格纸上用粗线画图1中四棱锥的府视图(不需要标字母),并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:,点.

(1)设是椭圆上任意的一点,是点关于坐标原点的对称点,记,求的取值范围;

(2)已知点是椭圆上在第一象限内的点,记为经过原点与点的直线,截直线所得的线段长,试将表示成直线的斜率的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几何证明选讲

在直角坐标系中,曲线的参数方程为是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程,并指出其表示何种曲线;

(2)若曲线与曲线交于两点,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCDPDDCEPC的中点,作EFPBPB于点F.

1)求证:PA平面EDB

2)求证:PB平面EFD

3)求二面角CPBD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为原点,A,B,C为平面内的三点.求证:

(1) 若A,B,C三点共线,则存在实数α,β,且α+β=1,

(2) 若存在实数α,β,且α+β=1,使得,则A,B,C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 :直线与抛物线有公共点.如果为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.

1)将一星期的商品销售利润表示成的函数;

2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

同步练习册答案