精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+
1
2
(b-1)x2+cx+d
(a,b,c,d∈R).
(1)若函数f(x)在x=1,x=2处取得极值,求b,c的值;
(2)若函数f(x)在区间(-∞,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数,且x2-x1>1,求证:b2>2(b+2c);
(3)在(2)的条件下,当t<x1时,试比较t2+bt+c与x1的大小.
分析:(1)先求函数f(x)的导函数,故x=1和x=2是导函数的零点从而得到答案.
(2)根据导函数大于0时原函数单调增,导函数小于0时原函数单调递减代入可得答案.
(3)根据x1,x2是x2+(b-1)x+c=0两根,所以可得x2+(b-1)x+c=(x-x1)(x-x2),然后整理放缩可得答案.
解答:解:(1)f'(x)=x2+(b-1)x+c,由题意知1、2是方程x2+(b-1)x+c=0两根,
-(b-1)=1+2
c=1×2

∴b=-2,c=2;
(2)由题意知,当x∈(-∞,x1)、(x2,+∞)时,f'(x)>0;
当x∈(x1,x2)时,f'(x)<0,
∴x1,x2是x2+(b-1)x+c=0两根,x1+x2=1-b,x1x2=c,
∴b2-2(b+2c)=b2-2b-4c=[1-(x+x)2]-2[1-(x1+x2)]-4x1x2=(x+x)2-1,
∵x1-x2>1,∴(x+x)2-1>0,
∴b2>2(b+2c).
(3)在(2)下,由上题知x2+(b-1)x+c=(x-x1)(x-x2),即x2+bx+c=(x-x1)(x-x2)+x,
∴t2+bt+c-x1=(t-x1)(t-x2)+t-x1=(t-x1)(t+1-x2).
∵x2>1+x1>1+t,
∴1+t-x2<0.
∵0<t<x1,∴t-x1<0,
∴(t-x1)(t+1-x2)<0,
∴t2+bt+c>x1
点评:本小题主要考查函数单调性的应用、函数在某点取得极值的条件、函数的单调性与导数的关系等基础知识,考查运算求解能力与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案