【题目】已知事件A,B满足A∩B=,A∪B=Ω,若P(A)=0.3,则P(B)=_____.
科目:高中数学 来源: 题型:
【题目】现有甲、乙两个投资项目,对甲项目投资十万元,据对市场份样本数据统计,年利润分布如下表:
年利润 | 万元 | 万元 | 万元 |
频数 |
对乙项目投资十万元,年利润与产品质量抽查的合格次数有关,在每次抽查中,产品合格的概率均为,在一年之内要进行次独立的抽查,在这次抽查中产品合格的次数与对应的利润如下表:
合格次数 | 次 | 次 | 次 |
年利润 | 万元 | 万元 | 万元 |
记随机变量分别表示对甲、乙两个项目各投资十万元的年利润.
(1)求的概率;
(2)某商人打算对甲或乙项目投资十万元,判断哪个项目更具有投资价值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表中的数据显示,与之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,取相同单位长度(其中,,).
(1)直线过原点,且它的倾斜角,求与圆的交点的极坐标(点不是坐标原点);
(2)直线过线段中点,且直线交圆于,两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】100件产品中有10件次品,从中任取7件,至少有5件次品的概率可以看成三个互斥事件的概率和,则这三个互斥事件分别是_____,_____和_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为.
(1)求椭圆的方程;
(2)当的面积为(其中为坐标原点)且时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四种说法:
①两个相交平面有不在同一直线上的三个公共点;②一条直线和一个点确定一个平面;③若四点不共面, 则每三点一定不共线; ④三条平行线确定三个平面.正确说法的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com