精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设与圆O相切的直线l交椭圆CAB两点(O为坐标原点),求△AOB面积的最大值。

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)利用椭圆的离心率为两焦点与短轴的一个端点的连线构成的三角形面积为,建立方程,即可求椭圆C的方程;

(Ⅱ)对直线AB的斜率分类讨论,设直线AB的方程为,利用相切可得,与椭圆联立,利用韦达定理可以表示,利用均值不等式求出最值即可得到△AOB面积的最大值

解:(I)由题设:

解得

∴椭圆C的方程为

(Ⅱ).设

1.当ABx轴时,

2.当AB与x轴不垂直时,设直线AB的方程为

由已知,得

代入椭圆方程消去y,

整理得,

,

,

,

,

当且仅当,即时等号成立.

时,

综上所述,从而△AOB面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为支援边远地区教育事业的发展,现有5名师范大学毕业生主动要求赴西部某地区三所不同的学校去支教,每个学校至少去1人,甲、乙不能安排在同一所学校,则不同的安排方法有( )

A.180B.150C.90D.114

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点为, 为圆心的圆与双曲线的某一条渐近线交于两点.若,且(其中为原点),则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C上顶点为A,右顶点为B,离心率O为坐标原点,原点到直线AB的距离为

(1)求椭圆C的标准方程;

(2)直线与椭圆C相交于EF两不同点,若椭圆C上一点P满足.求△EPF面积的最大值及此时的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)如果对所有的≥1,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论当时,函数的单调性;

2)当对任意的恒成立,其中.的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面垂直于.是棱的中点.

1)求证:

2)求二面角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某消费者协会在315号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1,第2,第3,第4,第5,其中第16人,得到的频率分布直方图如图所示.

1)求mn的值,并估计抽取的n名群众中年龄在的人数;

2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案